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Release 0.24.0

Date May 29, 2014

PyEDA is a Python library for electronic design automation.

Fork PyEDA: https://github.com/cjdrake/pyeda

Features:

• Symbolic Boolean algebra with a selection of function representations:

– Logic expressions

– Truth tables, with three output states (0, 1, “don’t care”)

– Reduced, ordered binary decision diagrams (ROBDDs)

• SAT solvers:

– Backtracking

– DPLL

– PicoSAT

• Espresso logic minimization

• Formal equivalence

• Multi-dimensional bit vectors

• DIMACS CNF/SAT parsers

• Logic expression parser
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CHAPTER 1

Contents

1.1 Overview

1.1.1 What is Electronic Design Eutomation (EDA)?

The Intel 4004, the world’s first commercially available microprocessor, was built from approximately 2300 transistors,
and had a clock frequency of 740 kilohertz (thousands of cycles per second) 1 2. A modern Intel microprocessor can
contain over 1.5 billion transistors, and will typically have a clock frequency ranging from two to four gigahertz
(billions of cycles per second).

In 1971 it took less than one hundred people to manufacture the 4004. That is approximately 23 transistors per
employee. If that ratio stayed the same between 1971 and 2012, Intel would need to employ about 65 million people
just to produce the latest Core i7 processor. That is one fifth the entire population of the United States!

Clearly, companies that design and manufacture integrated circuits have found ways to be more productive since then.

Simply stated, electronic design automation (EDA) is the science of optimizing productivity in the design and manu-
facture of electronic components.

1.1.2 Goals

After reading the previous section, EDA sounds like a vast field. The way we have defined it covers everything from
controlling robotic arms in the fabrication plant to providing free coffee to keep interns busy. We need to narrow our
focus a bit.

PyEDA is primarily concerned with implementing the data structures and algorithms necessary for performing logic
synthesis and verification. These tools form the theoretical foundation for the implementation of CAD tools for
designing VLSI (Very Large Scale Integrated circuit).

PyEDA is a hobby project, and is very unlikely to ever be a competitor to state-of-the-art EDA industry technology. It
should be useful for academic exploration and experimentation. If you use PyEDA, please email the author with your
success/failure stories.

1.1.3 Free Software

PyEDA is free software; you can use it or redistribute it under the terms of the “two-clause” BSD License.

1 Wikipedia: Intel 4004
2 The Story of the Intel 4004
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1.1.4 Repository

View the PyEDA source code on GitHub.

1.2 Installing PyEDA

This page describes how to procure your very own, shiny copy of PyEDA. It is a primary goal of the PyEDA project
to be a mainstream Python package, and adhere to the majority of conventions observed by the community.

1.2.1 Supported Platforms

PyEDA supports Windows, and any platform with a C compiler. The author does most development and testing on
Xubuntu Linux.

1.2.2 Supported Python Versions

Starting with version 0.15, PyEDA will only work with Python 3.2+. Starting with version 0.23, PyEDA will only
work with Python 3.3+. There were several reasons to drop support for Python 2:

• Python 3 is the future of the language.

• Almost all scientific software either has already been ported, or is in the process of being ported to Python 3.

• Only Python 3 has support for the def f(*args, kw1=val1, ...) syntax, used to great effect by logic
expression factory functions.

• It is too arduous to research and support all the C API changes from version 2 to version 3. Preprocessor is evil.

That said, the source code does not yet utilize several new Python 3 features. For example, classes are still declared
using the Python 2.7 syntax for “new-style” classes, ie class ClassName(object). The primary reason is that
PyLint is a little slow to support some of the latest and greatest language features.

1.2.3 Distutils / Virtualenv

The latest PyEDA release is hosted on PyPI.

To get PyEDA with pip:

$ pip3 install pyeda

Note: If you are using the Linux system distribution of pip, most likely pip will be part of Python-2.x, which won’t
work. It’s safer to always use pip3.

Note: If you are using a Windows wheel distribution, you may need to install the [Visual Studio 2012 Redis-
tributable](http://www.microsoft.com/en-us/download/details.aspx?id=30679).

We strongly recommend that you also install an excellent Python tool called IPython. For interactive use, it is vastly
superior to using the standard Python interpreter. To install IPython into your virtual environment:

$ pip3 install ipython
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1.2.4 Getting the Source

The PyEDA repository is hosted on GitHub. If you want the bleeding-edge source code, here is how to get it:

$ git clone https://github.com/cjdrake/pyeda.git
$ cd pyeda
# $PREFIX is the root of the installation area
$ python setup.py install --prefix $PREFIX

If you want to build the documentation, you must have the excellent Sphinx documentaton system installed.

$ make html

If you want to run the tests, you must have the excellent Nose unit testing framework installed.

$ make test
....................................
----------------------------------------------------------------------
Ran 72 tests in 15.123s

OK

1.3 Boolean Algebra

Boolean Algebra is a cornerstone of electronic design automation, and fundamental to several other areas of computer
science and engineering. PyEDA has an extensive library for the creation and analysis of Boolean functions.

This document describes how to explore Boolean algebra using PyEDA. We will be using some mathematical lan-
guage here and there, but please do not run away screaming in fear. This document assumes very little background
knowledge.

1.3.1 What is Boolean Algebra?

All great stories have a beginning, so let’s start with the basics. You probably took a class called “algebra” in (junior)
high school. So when you started reading this document you were already confused. Algebra is just algebra, right?
You solve for 𝑥, find the intersection of two lines, and you’re done, right?

As it turns out, the high school algebra you are familiar with just scratches the surface. There are many algebras with
equally many theoretical and practical uses. An algebra is the combination of two things:

1. a collection of mathematical objects, and

2. a collection of rules to manipulate those objects

For example, in high school algebra, you have numbers such as {1, 3, 5, 1
2 , .337}, and operators such as {+,−, ·,÷}.

The numbers are the mathematical objects, and the operators are the rules for how to manipulate them. Except in
very extreme circumstances (division by zero), whenever you add, subtract, or divide two numbers, you get another
number.

Algebras are a big part of the “tools of the trade” for a mathematician. A plumber has a wrench, a carpenter has a saw,
and a mathematician has algebras. To each his own.

A Boolean algebra defines the rules for working with the set {0, 1}. So unlike in normal algebra class where you have
more numbers than you can possibly imagine, in Boolean Algebra you only have two.

Even though it is possible to define a Boolean Algebra using different operators, by far the most common operators
are complement, sum, and product.

1.3. Boolean Algebra 5
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Complement Operator

The complement operator is a unary operator, which means it acts on a single Boolean input: 𝑥. The Boolean comple-
ment of 𝑥 is usually written as 𝑥′, 𝑥, or ¬𝑥.

The output of the Boolean complement is defined by:

0 = 1

1 = 0

Sum Operator

The sum (or disjunction) operator is a binary operator, which means it acts on two Boolean inputs: (𝑥, 𝑦). The Boolean
sum of 𝑥 and 𝑦 is usually written as 𝑥+ 𝑦, or 𝑥 ∨ 𝑦.

The output of the Boolean sum is defined by:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

This looks familiar so far except for the 1 + 1 = 1 part. The Boolean sum operator is also called OR because the
output of 𝑥 or 𝑦 equals 1 if and only if 𝑥 = 1, or 𝑦 = 1, or both.

Product Operator

The product (or conjunction) operator is also a binary operator. The Boolean product of 𝑥 and 𝑦 is usually written as
𝑥 · 𝑦, or 𝑥 ∧ 𝑦.

The output of the Boolean product is defined by:

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1

As you can see, the product operator looks exactly like normal multiplication. The Boolean product is also called
AND because the output of 𝑥 and 𝑦 equals 1 if and only if both 𝑥 = 1, and 𝑦 = 1.

Other Binary Operators

For reference, here is a table of all binary Boolean operators:

𝑓 𝑔 0 𝑓 ↓
𝑔

𝑓 <
𝑔

𝑓 ′ 𝑓 >
𝑔

𝑔′ 𝑓 ̸=
𝑔

𝑓 ↑
𝑔

𝑓 ·𝑔 𝑓 =
𝑔

𝑔 𝑓 ≤
𝑔

𝑓 𝑓 ≥
𝑔

𝑓 +
𝑔

1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Some additional notes:

• 𝑓 ↓ 𝑔 is the binary NOR (not or) operator.

6 Chapter 1. Contents
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• 𝑓 ↑ 𝑔 is the binary NAND (not and) operator.

• 𝑓 ≤ 𝑔 is commonly written using the binary implication operator 𝑓 =⇒ 𝑔.

• 𝑓 = 𝑔 is commonly written using either the binary equivalence operator 𝑓 ⇐⇒ 𝑔, or the binary XNOR
(exclusive nor) operator 𝑓 ⊙ 𝑔.

• 𝑓 ̸= 𝑔 is commonly written using the binary XOR (exclusive or) operator 𝑓 ⊕ 𝑔.

Additional Perspective

You are probably thinking this is all very nice, but what can you possibly do with an algebra that only concerns itself
with 0, 1, NOT, OR, and AND?

In 1937, Claude Shannon realized that electronic circuits have two-value switches that can be combined into networks
capable of solving any logical or numeric relationship. A transistor is nothing but an electrical switch. Similar to a
light bulb, it has two states: off (0), and on (1). Wiring transistors together in serial imitates the AND operator, and
wiring them together in parallel imitates the OR operator. If you wire a few thousand transistors together in interesting
ways, you can build a computer.

1.3.2 Import Symbols from PyEDA

All examples in this document require that you execute the following statements in your interpreter:

>>> from pyeda.inter import *

If you want to see all the symbols you import with this statement, look into pyeda/inter.py.

Note: Using the from ... import * syntax is generally frowned upon for Python programming, but is ex-
tremely convenient for interactive use.

1.3.3 Built-in Python Boolean Operations

Python has a built-in Boolean data type, bool. You can think of the False keyword as an alias for the number 0,
and the True keyword as an alias for the number 1.

>>> int(False)
0
>>> int(True)
1
>>> bool(0)
False
>>> bool(1)
True

The keywords for complement, sum, and product are not, or, and.

>>> not True
False
>>> True or False
True
>>> True and False
False

You can use the Python interpreter to evaluate complex expressions:

1.3. Boolean Algebra 7
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>>> (True and False) or not (False or True)
False

PyEDA recognizes False, 0, and ’0’ as Boolean zero (0), and True, 1, and ’1’ as Boolean one (1). You can use
the int function to manually convert the bool and str data types to integers:

>>> int(True)
1
>>> int(’0’)
0

1.3.4 Boolean Variables

Okay, so we already know what Boolean Algebra is, and Python can already do everything we need, right?

Just like in high school algebra, things start to get interesting when we introduce a few variables.

A Boolean variable is an abstract numerical quantity that may assume any value in the set 𝐵 = {0, 1}.

For example, if we flip a coin, the result will either be “heads” or “tails”. Let’s say we assign tails the value 0, and
heads the value 1. Now divide all of time into two periods: 1) before the flip, and 2) after the flip.

Before you flip the coin, imagine the possibility of either “tails” (0) or “heads” (1). The abstract concept in your mind
about a coin that may land in one of two ways is the variable. Normally, we will give the abstract quantity a name to
distinguish it from other abstract quantities we might be simultaneously considering. The most familiar name for an
arbitrary algebraic variable is 𝑥.

After you flip the coin, you can see the result in front of you. The coin flip is no longer an imaginary variable; it is a
known constant.

Creating Variable Instances

Let’s create a few Boolean expression variables using the exprvar method:

>>> a, b, c, d = map(exprvar, ’abcd’)
>>> a.name
a
>>> b.name
b

By default, all variables go into a global namespace. Also, all variable instances are singletons. That is, only one
variable is allowed to exist per name. Verify this fact with the following:

>>> a = exprvar(’a’)
>>> _a = exprvar(’a’)
>>> id(a) == id(_a)
True

Warning: We recommend that you never do something crazy like assigning a and _a to the same variable
instance.

Indexing Variables

“There are only two hard things in Computer Science: cache invalidation and naming things.”

—Tim Bray

8 Chapter 1. Contents
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Consider the coin-flipping example from before. But this time, instead of flipping one coin, we want to flip a hundred
coins. You could start naming your variables by assigning the first flip to 𝑥, followed by 𝑦, and so on. But there
are only twenty-six letters in the English alphabet, so unless we start resorting to other alphabets, we will hit some
limitations with this system very quickly.

For cases like these, it is convenient to give variables an index. Then, you can name the variable for the first coin flip
𝑥[0], followed by 𝑥[1], 𝑥[2], and so on.

Here is how to give variables indices using the exprvar function:

>>> x_0 = exprvar(’x’, 0)
>>> x_1 = exprvar(’x’, 1)
>>> x_0, x_1
(x[0], x[1])

You can even give variables multiple indices by using a tuple:

>>> x_0_1_2_3 = exprvar(’x’, (0, 1, 2 ,3))
>>> x_0_1_2_3
x[0,1,2,3]

Assigning individual variables names like this is a bit cumbersome. It is much easier to just use the exprvars factory
function:

>>> X = exprvars(’x’, 8)
>>> X
[x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]]
>>> X[3]
x[3]
>>> X[2:5]
[x[2], x[3], x[4]]
>>> X[:5]
[x[0], x[1], x[2], x[3], x[4]]
>>> X[5:]
[x[5], x[6], x[7]]
>>> X[-1]
x[7]

Similary for multi-dimensional bit vectors:

>>> X = exprvars(’x’, 4, 4)
>>> X
farray([[x[0,0], x[0,1], x[0,2], x[0,3]],

[x[1,0], x[1,1], x[1,2], x[1,3]],
[x[2,0], x[2,1], x[2,2], x[2,3]],
[x[3,0], x[3,1], x[3,2], x[3,3]]])

>>> X[2]
farray([x[2,0], x[2,1], x[2,2], x[2,3]])
>>> X[2,2]
x[2,2]
>>> X[1:3]
farray([[x[1,0], x[1,1], x[1,2], x[1,3]],

[x[2,0], x[2,1], x[2,2], x[2,3]]])
>>> X[1:3,2]
farray([x[1,2], x[2,2]])
>>> X[2,1:3]
farray([x[2,1], x[2,2]])
>>> X[-1,-1]
x[3,3]

1.3. Boolean Algebra 9
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1.3.5 Points in Boolean Space

Before we talk about Boolean functions, it will be useful to discuss the nature of Boolean space.

In high school algebra, you started with functions that looked like 𝑓(𝑥) = 2𝑥 + 3. Later, you probably investigated
slightly more interesting functions such as 𝑓(𝑥) = 𝑥2, 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥), and 𝑓(𝑥) = 𝑒𝑥. All of these are functions of a
single variable. That is, the domain of these functions is the set of all values the variable 𝑥 can take. In all these cases,
that domain is [−∞,+∞].

Remember that variables in Boolean algebra can only take values of 0 or 1. So to create interesting functions in
Boolean algebra, you use many variables.

Let’s revisit the coin-flipping example again. This time we will flip the coin exactly twice. Create a variable 𝑥 to
represent the result of the first flip, and a variable 𝑦 to represent the result of the second flip. Use zero (0) to represent
“tails”, and one (1) to represent “heads”.

The number of variables you use is called the dimension. All the possible outcomes of this experiment is called the
space. Each possible outcome is called a point.

If you flip the coin twice, and the result is (heads, tails), that result is point (1, 0) in a 2-dimensional Boolean space.

Use the iter_points generator to iterate through all possible points in an N-dimensional Boolean space:

>>> list(iter_points([x, y]))
[{x: 0, y: 0}, {x: 1, y: 0}, {x: 0, y: 1}, {x: 1, y: 1}]

PyEDA uses a dictionary to represent a point. The keys of the dictionary are the variable instances, and the values are
numbers in 0, 1.

Try doing the experiment with three coin flips. Use the variable 𝑧 to represent the result of the third flip.

>>> list(iter_points([z, y, x]))
[{x: 0, y: 0, z: 0},
{x: 0, y: 0, z: 1},
{x: 0, y: 1, z: 0},
{x: 0, y: 1, z: 1},
{x: 1, y: 0, z: 0},
{x: 1, y: 0, z: 1},
{x: 1, y: 1, z: 0},
{x: 1, y: 1, z: 1}]

The observant reader will notice that this is equivalent to:

• generating all bit-strings of length 𝑁

• counting from 0 to 7 in the binary number system

1.3.6 Boolean Functions

A Boolean function is a rule that maps points in an 𝑁 -dimensional Boolean space to an element in {0, 1}.
In formal mathematical lingo, 𝑓 : 𝐵𝑁 ⇒ 𝐵, where 𝐵𝑁 means the Cartesian product of 𝑁 Boolean vari-
ables, 𝑣 ∈ {0, 1}. For example, if you have three input variables, 𝑎, 𝑏, 𝑐, then 𝐵3 = 𝑎 × 𝑏 × 𝑐 =
{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}. 𝐵3 is the domain of the function (the input
part), and 𝐵 = {0, 1} is the range of the function (the output part).

In the relevant literature, you might see a Boolean function described as a type of relation, or geometrically as a cube.
These are valid descriptions, but we will use a familiar analogy for better understanding.

A Boolean function is somewhat like a game, where the player takes 𝑁 binary input turns (eg heads/tails), and there
is a binary result determined by a rule (eg win/loss). Let’s revisit the coin-flipping example. One possible game is that
we will flip the coin three times, and it will be considered a “win” if heads comes up all three.

10 Chapter 1. Contents
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Summarize the game using a truth table.

𝑥0 𝑥1 𝑥2 𝑓
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

You can create the equivalent truth table with PyEDA like so:

>>> X = exprvars(’x’, 3)
>>> f = truthtable(X, "00000001")
>>> f
inputs: x[2] x[1] x[0]
000 0
001 0
010 0
011 0
100 0
101 0
110 0
111 1

Don’t be alarmed that the inputs are displayed most-significant-bit first. That can actually come in handy sometimes.

The game from the previous example can be expressed as the expression 𝑓(𝑥0, 𝑥1, 𝑥2) = 𝑥0 · 𝑥1 · 𝑥2. It is generally
not convenient to list all the input variables, so we will normally shorten that statement to just 𝑓 = 𝑥0 · 𝑥1 · 𝑥2.

>>> truthtable2expr(f)
And(x[0], x[1], x[2])

Let’s define another game with a slightly more interesting rule: “you win if the majority of flips come up heads”.

𝑥0 𝑥1 𝑥2 𝑓
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

This is a three-variable form of the “majority” function. You can express it as a truth table:

>>> f = truthtable(X, "00010111")
>>> f
inputs: x[2] x[1] x[0]
000 0
001 0
010 0
011 1
100 0
101 1
110 1
111 1

1.3. Boolean Algebra 11
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or as an expression:

>>> truthtable2expr(f)
Or(And(~x[0], x[1], x[2]), And(x[0], ~x[1], x[2]), And(x[0], x[1], ~x[2]), And(x[0], x[1], x[2]))

1.3.7 PyEDA Variable/Function Base Classes

Now that we have a better understanding of Boolean variables and functions, we will dive into how PyEDA models
them.

We have already seen a glance of the type of data structure used to represent Boolean functions (tables and expres-
sions). There are actually several of these representations, including (but not limited to):

• Truth tables

• Implicant tables

• Logic expressions

• Decision diagrams, including:

– Binary decision diagrams (BDD)

– Reduced, ordered binary decisions diagrams (ROBDD)

– Zero-suppressed decision diagrams (ZDD)

• And inverter graphs (AIG)

Each data type has strengths and weaknesses. For example, ROBDDs are a canonical form, which make proofs of
formal equivalence very cheap. On the other hand, ROBDDs can be exponential in size in many cases, which makes
them memory-constrained.

The following sections show the abstract base classes for Boolean variables and functions defined in
pyeda.boolalg.boolfunc.

Boolean Variables

In order to easily support algebraic operations on Boolean functions, each function representation has a corresponding
variable representation. For example, truth table variables are instances of TruthTableVariable, and expression
variables are instances of ExpressionVariable, both of which inherit from Variable.

class pyeda.boolalg.boolfunc.Variable(names, indices)
Base class for a symbolic Boolean variable.

A Boolean variable is an abstract numerical quantity that may assume any value in the set 𝐵 = {0, 1}.

Note: Do NOT instantiate a Variable directly. Instead, use one of the concrete im-
plementations: pyeda.boolalg.bdd.bddvar() pyeda.boolalg.expr.exprvar(),
pyeda.boolalg.table.ttvar().

A variable is defined by one or more names, and zero or more indices. Multiple names establish hierarchical
namespaces, and multiple indices group several related variables.

Each variable has a unique, positive integer called the uniqid. This integer may be used to identify a variable
that is represented by more than one data structure. For example, bddvar(’a’, 0) and exprvar(’a’,
0) will refer to two different Variable instances, but both will share the same uniqid.

12 Chapter 1. Contents
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All variables are implicitly ordered. If two variable names are identical, compare their indices. Otherwise, do a
string comparison of their names. This is only useful where variable order matters, and is not meaningful in any
algebraic sense.

For example, the following statements are true:

•a == a

•a < b

•a[0] < a[1]

•a[0][1] < a[0][2]

name
Return the innermost variable name.

qualname
Return the fully qualified name.

Boolean Functions

This is the abstract base class for Boolean function representations.

In addition to the methods and properties listed below, classes inheriting from Function should also overload the
__invert__, __or__, __and__, and __xor__ magic methods. This makes it possible to perform symbolic,
algebraic manipulations using a Python interpreter.

class pyeda.boolalg.boolfunc.Function
Abstract base class that defines an interface for a symbolic Boolean function of 𝑁 variables.

support
Return the support set of a function.

Let 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) be a Boolean function of 𝑁 variables.

The unordered set {𝑥1, 𝑥2, . . . , 𝑥𝑛} is called the support of the function.

usupport
Return the untyped support set of a function.

inputs
Return the support set in name/index order.

top
Return the first variable in the ordered support set.

degree
Return the degree of a function.

A function from 𝐵𝑁 ⇒ 𝐵 is called a Boolean function of degree 𝑁 .

cardinality
Return the cardinality of the relation 𝐵𝑁 ⇒ 𝐵.

Always equal to 2𝑁 .

iter_domain()
Iterate through all points in the domain.

iter_image()
Iterate through all elements in the image.
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iter_relation()
Iterate through all (point, element) pairs in the relation.

restrict(point)
Return the Boolean function that results after restricting a subset of its input variables to {0, 1}.

𝑓 | 𝑥𝑖 = 𝑏

vrestrict(vpoint)
Expand all vectors before applying ‘restrict’.

compose(mapping)
Return the Boolean function that results after substituting a subset of its input variables for other Boolean
functions.

𝑓1 | 𝑥𝑖 = 𝑓2

satisfy_one()
If this function is satisfiable, return a satisfying input point. A tautology may return a zero-dimensional
point; a contradiction must return None.

satisfy_all()
Iterate through all satisfying input points.

satisfy_count()
Return the cardinality of the set of all satisfying input points.

iter_cofactors(vs=None)
Iterate through the cofactors of a function over N variables.

The vs argument is a sequence of 𝑁 Boolean variables.

The cofactor of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥𝑖 is: 𝑓𝑥𝑖 = 𝑓(𝑥1, 𝑥2, . . . , 1, . . . , 𝑥𝑛)

The cofactor of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥′
𝑖 is: 𝑓𝑥′

𝑖
= 𝑓(𝑥1, 𝑥2, . . . , 0, . . . , 𝑥𝑛)

cofactors(vs=None)
Return a tuple of the cofactors of a function over N variables.

The vs argument is a sequence of 𝑁 Boolean variables.

The cofactor of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥𝑖 is: 𝑓𝑥𝑖 = 𝑓(𝑥1, 𝑥2, . . . , 1, . . . , 𝑥𝑛)

The cofactor of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥′
𝑖 is: 𝑓𝑥′

𝑖
= 𝑓(𝑥1, 𝑥2, . . . , 0, . . . , 𝑥𝑛)

smoothing(vs=None)
Return the smoothing of a function over a sequence of N variables.

The vs argument is a sequence of 𝑁 Boolean variables.

The smoothing of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥𝑖 is: 𝑆𝑥𝑖
(𝑓) = 𝑓𝑥𝑖

+ 𝑓𝑥′
𝑖

This is the same as the existential quantification operator: ∃{𝑥1, 𝑥2, . . . } 𝑓

consensus(vs=None)
Return the consensus of a function over a sequence of N variables.

The vs argument is a sequence of 𝑁 Boolean variables.

The consensus of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥𝑖 is: 𝐶𝑥𝑖
(𝑓) = 𝑓𝑥𝑖

· 𝑓𝑥′
𝑖

This is the same as the universal quantification operator: ∀{𝑥1, 𝑥2, . . . } 𝑓

derivative(vs=None)
Return the derivative of a function over a sequence of N variables.

The vs argument is a sequence of 𝑁 Boolean variables.
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The derivative of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥𝑖 is: 𝜕
𝜕𝑥𝑖

𝑓 = 𝑓𝑥𝑖 ⊕ 𝑓𝑥′
𝑖

This is also known as the Boolean difference.

is_zero()
Return whether this function is zero.

Note: This method will only look for a particular “zero form”, and will NOT do a full search for a
contradiction.

is_one()
Return whether this function is one.

Note: This method will only look for a particular “one form”, and will NOT do a full search for a
tautology.

static box(obj)
Convert primitive types to a Function.

unbox()
Return integer 0 or 1 if possible, otherwise return the Function.

1.4 Binary Decision Diagrams

A binary decision diagram is a directed acyclic graph used to represent a Boolean function. They were originally
introduced by Lee 3, and later by Akers 4. In 1986, Randal Bryant introduced the reduced, ordered BDD (ROBDD) 5.

The ROBDD is a canonical form, which means that given an identical ordering of input variables, equivalent Boolean
functions will always reduce to the same ROBDD. This is a very desirable property for determining formal equiva-
lence. Also, it means that unsatisfiable functions will be reduced to zero, making SAT/UNSAT calculations trivial.
Due to these auspicious properties, the term BDD almost always refers to some minor variation of the ROBDD devised
by Bryant.

In this chapter, we will discuss how to construct and visualize ROBDDs using PyEDA.

The code examples in this chapter assume that you have already prepared your terminal by importing all interactive
symbols from PyEDA:

>>> from pyeda.inter import *

1.4.1 Constructing BDDs

There are two ways to construct a BDD:

1. Convert an expression

2. Use operators on existing BDDs

3 C.Y. Lee, Representation of Switching Circuits by Binary-Decision Programs, Bell System Technical Journal, Vol. 38, July 1959, pp. 985-999.
4 S.B. Akers, Binary Decision Diagrams, IEEE Transactions on Computers, Vol. C-27, No. 6, June 1978, pp. 509-516.
5 Randal E. Bryant Graph-Based Algorithms for Boolean Function Manipulation, IEEE Transactions on Computers, 1986

http://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
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Convert an Expression

Since the Boolean expression is PyEDA’s central data type, you can use the expr2bdd function to convert arbitrary
expressions to BDDs:

>>> f = expr("a & b | a & c | b & c")
>>> f
Or(And(a, b), And(a, c), And(b, c))
>>> f = expr2bdd(f)
>>> f
<pyeda.boolalg.bdd.BinaryDecisionDiagram at 0x7f556874ed68>

As you can see, the BDD does not have such a useful string representation. More on this subject later.

Using Operators

Just like expressions, BDDs have their own Variable implementation. You can use the bddvar function to con-
struct them:

>>> a, b, c = map(bddvar, ’abc’)
>>> type(a)
pyeda.boolalg.bdd.BDDVariable
>>> isinstance(a, BinaryDecisionDiagram)
True

Creating indexed variables with namespaces always works just like expressions:

>>> a0 = bddvar(’a’, 0)
>>> a0
a[0]
>>> b_a_0_1 = bddvar((’a’, ’b’), (0, 1))
b.a[0,1]

Also, the bddvars function can be used to create multi-dimensional arrays of indexed variables:

>>> X = bddvars(’x’, 4, 4)
>>> X
farray([[x[0,0], x[0,1], x[0,2], x[0,3]],

[x[1,0], x[1,1], x[1,2], x[1,3]],
[x[2,0], x[2,1], x[2,2], x[2,3]],
[x[3,0], x[3,1], x[3,2], x[3,3]]])

From variables, you can use Python’s ~|&^ operators to construct arbitrarily large BDDs.

Here is the simple majority function again:

>>> f = a & b | a & c | b & c
>>> f
<pyeda.boolalg.bdd.BinaryDecisionDiagram at 0x7f556874ed68>

This time, we can see the benefit of having variables available:

>>> f.restrict({a: 0})
<pyeda.boolalg.bdd.BinaryDecisionDiagram at 0x7f556874eb38>
>>> f.restrict({a: 1, b: 0})
c
>>> f.restrict({a: 1, b: 1})
1
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1.4.2 BDD Visualization with IPython and GraphViz

If you have GraphViz installed on your machine, and the dot executable is available on your shell’s path, you can use
the gvmagic IPython extension to visualize BDDs.

In [1]: %install_ext https://raw.github.com/cjdrake/ipython-magic/master/gvmagic.py

In [2]: %load_ext gvmagic

For example, here is the majority function in three variables as a BDD:

In [3]: a, b, c = map(bddvar, ’abc’)

In [4]: f = a & b | a & c | b & c

In [5]: %dotobj f

Figure 1.1: BDD of Three-Input Majority Function
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The way this works is that the %dotobj extension internally calls the to_dot method on f:

In [6]: f.to_dot()
’graph BDD {

n139865543613912 [label=0,shape=box];
n139865543728208 [label=1,shape=box];
n139865543169752 [label="c",shape=circle];
n139865552542296 [label="b",shape=circle];
n139865543169864 [label="b",shape=circle];
n139865543170312 [label="a",shape=circle];
n139865543169752 -- n139865543613912 [label=0,style=dashed];
n139865543169752 -- n139865543728208 [label=1];
n139865552542296 -- n139865543613912 [label=0,style=dashed];
n139865552542296 -- n139865543169752 [label=1];
n139865543169864 -- n139865543169752 [label=0,style=dashed];
n139865543169864 -- n139865543728208 [label=1];
n139865543170312 -- n139865552542296 [label=0,style=dashed];
n139865543170312 -- n139865543169864 [label=1]; }’

1.4.3 Satisfiability

Like we mentioned in the introduction, BDDs are a canonical form. That means that all unsatisfiable functions will
reduce to zero, and all tautologies will reduce to one. If you simply want to check whether a function is SAT or
UNSAT, just construct a BDD, and test whether it is zero/one.

>>> a, b = map(bddvar, ’ab’)
>>> f = ~a & ~b | ~a & b | a & ~b | a & b
>>> f
1
>>> f.is_one()
True
>>> g = (~a | ~b) & (~a | b) & (a | ~b) & (a | b)
>>> g
0
>>> g.is_zero()
True

If you need one or more satisfying input points, use the satisfy_one and satisfy_all functions. The algorithm
that implements SAT is very simple and elegant; it just finds a path from the function’s root node to one.

>>> a, b, c = map(bddvar, ’abc’)
>>> f = a ^ b ^ c
>>> f.satisfy_one()
{b: 0, a: 0, c: 1}
>>> list(f.satisfy_all())
[{a: 0, b: 0, c: 1},
{a: 0, b: 1, c: 0},
{a: 1, b: 0, c: 0},
{a: 1, b: 1, c: 1}]

Trace all that paths from the top node to 1 to verify.

1.4.4 Formal Equivalence

Because BDDs are a canonical form, functional equivalence is trivial.

Here is an example where we define the XOR function by using 1) the XOR operator, and 2) OR/AND/NOT operators.
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Figure 1.2: BDD of Three-Input XOR Function
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>>> a, b, c = map(bddvar, ’abc’)
>>> f1 = a ^ b ^ c
>>> f2 = a & ~b & ~c | ~a & b & ~c | ~a & ~b & c | a & b & c

Just like expressions, BDDs have an equivalent method:

>>> f1.equivalent(f2)
True

However, this isn’t required. PyEDA maintains a unique table of BDD nodes and their function pointers, so you can
just test for equality using the Python is operator:

>>> f1 is f2
True

1.4.5 Variable Ordering

The size of a BDD is very sensitive to the order of variable decomposition. For example, here is a BDD that uses an
ideal variable order:

In [1]: X = bddvars(’x’, 8)

In [2]: f1 = X[0] & X[1] | X[2] & X[3] | X[4] & X[5]

In [3]: %dotobj f1

And here is the same function, with a bad variable order:

In [2]: f2 = X[0] & X[3] | X[1] & X[4] | X[2] & X[5]

In [3]: %dotobj f2

The previous example was used by Bryant 3 to demonstrate this concept. When you think of the definition of a BDD,
it becomes clear why some orderings are superior to others. What you want in a variable ordering is to decide as much
of the function at every decision level as you traverse towards 0 and 1.

PyEDA implicitly orders all variables. It is therefore not possible to create a new BDD by reordering its inputs. You
can, however, rename the variables using the compose method to achieve the desired result.

For example, to optimize the previous BDD:

In [4]: g2 = f2.compose({X[0]: Y[0], X[1]: Y[2], X[2]: Y[4],
X[3]: Y[1], X[4]: Y[3], X[5]: Y[5]})

In [5]: %dotobj g2

1.4.6 Garbage Collection

Since BDDs are a memory-constrained data structure, the subject of garbage collection is very important.

PyEDA uses the Python standard library’s weakref module to automatically garbage collect BDD nodes when they
are no longer needed. The BDD function contains a reference to a node, which contains references to it’s children,
and so on until you get to zero/one. When a function’s name is either deleted or it goes out of scope, it may initiate a
corresponding cascade of node deletions.

This is best illustrated with an example. If you look directly into the pyeda.boolalg.bdd module, you can find
the memory structure that holds BDD nodes:
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Figure 1.3: Good Variable Ordering
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Figure 1.4: Bad Variable Ordering
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Figure 1.5: After Variable Renaming
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>>> from pyeda.boolalg.bdd import _BDDNODES
>>> len(_BDDNODES)
2

The table contains two static nodes: zero and one. Let’s define a few variables:

>>> from pyeda.inter import *
>>> a, b = map(bddvar, ’ab’)
>>> len(_BDDNODES)
4

Now define three simple BDDs:

>>> f1 = a | b
>>> len(_BDDNODES)
5
>>> f2 = a & b
>>> len(_BDDNODES)
6
>>> f3 = a ^ b
>>> len(_BDDNODES)
8

Now there are eight nodes. Let’s count the remaining nodes as we delete functions:

>>> del f1
>>> len(_BDDNODES)
7
>>> del f2
>>> len(_BDDNODES)
6
>>> del f3
>>> len(_BDDNODES)
4

1.4.7 References

1.5 Boolean Expressions

Expressions are a very powerful and flexible way to represent Boolean functions. They are the central data type
of PyEDA’s symbolic Boolean algebra engine. This chapter will explain how to construct and manipulate Boolean
expressions.

The code examples in this chapter assume that you have already prepared your terminal by importing all interactive
symbols from PyEDA:

>>> from pyeda.inter import *

1.5.1 Expression Constants

You can represent 0 and 1 as expressions:

>>> zero = expr(0)
>>> one = expr(1)

24 Chapter 1. Contents



Python EDA Documentation, Release 0.24.0

We will describe the expr function in more detail later. For now, let’s just focus on the representation of constant
values.

All of the following conversions from 0 have the same effect:

>>> zeroA = expr(0)
>>> zeroB = expr(False)
>>> zeroC = expr("0")

All three “zero” objects are the same:

>>> zeroA == zeroB == zeroC
True

Similarly for 1:

>>> oneA = expr(1)
>>> oneB = expr(True)
>>> oneC = expr("1")

All three “one” objects are the same:

>>> oneA == oneB == oneC
True

However, these results might come as a surprise:

>>> expr(0) == 0
False
>>> expr(1) == True
False

PyEDA evaluates all zero-like and one-like objects, and stores them internally using a module-level singleton in
pyeda.boolalg.expr:

>>> type(expr(0))
pyeda.boolalg.expr._ExprZero
>>> type(expr(1))
pyeda.boolalg.expr._ExprOne

Once you have converted zero/one to expressions, they implement the full Boolean Function API.

For example, constants have an empty support set:

>>> one.support
frozenset()

Also, apparently zero is not satisfiable:

>>> zero.satisfy_one() is None
True

This fact might seem underwhelming, but it can have some neat applications. For example, here is a sneak peak of
Shannon expansions:

>>> a, b = map(exprvar, ’ab’)
>>> zero.expand([a, b], conj=True)
And(Or(a, b), Or(a, ~b), Or(~a, b), Or(~a, ~b))
>>> one.expand([a, b])
Or(And(~a, ~b), And(~a, b), And(a, ~b), And(a, b))

1.5. Boolean Expressions 25



Python EDA Documentation, Release 0.24.0

1.5.2 Expression Literals

A Boolean literal is defined as a variable or its complement. The expression variable and complement data types are
the primitives of Boolean expressions.

Variables

To create expression variables, use the exprvar function.

For example, let’s create a variable named 𝑎, and assign it to a Python object named a:

>>> a = exprvar(’a’)
>>> type(a)
pyeda.boolalg.expr.ExprVariable

One efficient method for creating multiple variables is to use Python’s builtin map function:

>>> a, b, c = map(exprvar, ’abc’)

The primary benefit of using the exprvar function rather than a class constructor is to ensure that variable instances
are unique:

>>> a = exprvar(’a’)
>>> a_new = exprvar(’a’)
>>> id(a) == id(a_new)
True

You can name a variable pretty much anything you want, though we recommend standard identifiers:

>>> foo = exprvar(’foo’)
>>> holy_hand_grenade = exprvar(’holy_hand_grenade’)

By default, all variables go into a global namespace. You can assign a variable to a specific namespace by passing a
tuple of strings as the first argument:

>>> a = exprvar(’a’)
>>> c_b_a = exprvar((’a’, ’b’, ’c’))
>>> a.names
(’a’, )
>>> c_b_a.names
(’a’, ’b’, ’c’)

Notice that the default representation of a variable will dot all the names together starting with the most significant
index of the tuple on the left:

>>> str(c_b_a)
’c.b.a’

Since it is very common to deal with grouped variables, you may assign indices to variables as well. Each index is a
new dimension.

To create a variable with a single index, use an integer argument:

>>> a42 = exprvar(’a’, 42)
>>> str(a42)
a[42]

To create a variable with multiple indices, use a tuple argument:
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>>> a_1_2_3 = exprvar(’a’, (1, 2, 3))
>>> str(a_1_2_3)
a[1,2,3]

Finally, you can combine multiple namespaces and dimensions:

>>> c_b_a_1_2_3 = exprvar((’a’, ’b’, ’c’), (1, 2, 3))
>>> str(c_b_a_1_2_3)
c.b.a[1,2,3]

Note: The previous syntax is starting to get a bit cumbersome. For a more powerful method of creating multi-
dimensional arrays, use the exprvars function.

Complements

A complement is defined as the inverse of a variable. That is:

𝑎+ 𝑎′ = 1

𝑎 · 𝑎′ = 0

One way to create a complement from a pre-existing variable is to simply apply Python’s ~ unary negate operator.

For example, let’s create a variable and its complement:

>>> a = exprvar(’a’)
>>> ~a
~a
>>> type(~a)
pyeda.boolalg.expr.ExprComplement

All complements created from the same variable instance are not just identical, they all refer to the same object:

>>> id(~a) == id(~a)
True

1.5.3 Constructing Expressions

Expressions are defined recursively as being composed of primitives (constants, variables), and expressions joined by
Boolean operators.

Now that we are familiar with all of PyEDA’s Boolean primitives, we will learn how to construct more interesting
expressions.

From Constants, Variables, and Python Operators

PyEDA overloads Python’s ~, |, ^, and & operators with NOT, OR, XOR, and AND, respectively.

Let’s jump in by creating a full adder:

>>> a, b, ci = map(exprvar, "a b ci".split())
>>> s = ~a & ~b & ci | ~a & b & ~ci | a & ~b & ~ci | a & b & ci
>>> co = a & b | a & ci | b & ci

Using XOR looks a lot nicer for the sum output:
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>>> s = a ^ b ^ ci

You can use the expr2truthtable function to do a quick check that the sum logic is correct:

>>> expr2truthtable(s)
inputs: ci b a
000 0
001 1
010 1
011 0
100 1
101 0
110 0
111 1

Similarly for the carry out logic:

>>> expr2truthtable(co)
inputs: ci b a
000 0
001 0
010 0
011 1
100 0
101 1
110 1
111 1

From Factory Functions

Python does not have enough builtin operators to handle all interesting Boolean functions we can represent directly
as an expression. Also, binary operators are limited to two operands at a time, whereas several Boolean operators are
N-ary (arbitrary many operands). This section will describe all the factory functions that can be used to create arbitrary
Boolean expressions.

The general form of these functions is OP(arg [, arg], simplify=True). The function is an operator name,
followed by one or more arguments, followed by the simplify parameter. Some functions also have a conj
parameter, which selects between conjunctive (conj=True) and disjunctive (conj=False) formats.

One advantage of using these functions is that you do not need to create variable instances prior to passing them as
arguments. You can just pass string identifiers, and PyEDA will automatically parse and convert them to variables.

For example, the following two statements are equivalent:

>>> Not(’a[0]’)
~a[0]

and:

>>> a0 = exprvar(’a’, 0)
>>> Not(a0)
~a[0]

Primary Operators

Since NOT, OR, and AND form a complete basis for a Boolean algebra, these three operators are primary.
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Not(arg, simplify=True)
Return an expression that is the inverse of the input.

Or(*args, simplify=True)
Return an expression that evaluates to 1 if and only if any inputs are 1.

And(*args, simplify=True)
Return an expression that evaluates to 1 if and only if all inputs are 1.

Example of full adder logic using Not, Or, and And:

>>> s = Or(And(Not(’a’), Not(’b’), ’ci’), And(Not(’a’), ’b’, Not(’ci’)), And(’a’, Not(’b’), Not(’ci’)), And(’a’, ’b’, ’ci’))
>>> co = Or(And(’a’, ’b’), And(’a’, ’ci’), And(’b’, ’ci’))

Secondary Operators

A secondary operator is a Boolean operator that can be natively represented as a PyEDA expression, but contains
more information than the primary operators. That is, these expressions always increase in tree size when converted
to primary operators.

Nor(*args, simplify=True)
Return an expression that evaluates to 0 if and only if any inputs are 1. The inverse of Or.

Nand(*args, simplify=True)
Return an expression that evaluates to 0 if an only if all inputs are 1. The inverse of And.

Xor(*args, simplify=True)
Return an expression that evaluates to 1 if and only if the input parity is odd.

The word parity in this context refers to whether the number of ones in the input is even (divisible by two). For
example, the input string “0101” has even parity (2 ones), and the input string “0001” has odd parity (1 ones).

The full adder circuit has a more dense representation when you use the Xor operator:

>>> s = Xor(’a’, ’b’, ’ci’)
>>> co = Or(And(’a’, ’b’), And(’a’, ’ci’), And(’b’, ’ci’))

Xnor(*args, simplify=True)
Return an expression that evaluates to 1 if and only if the input parity is even.

Equal(*args, simplify=True)
Return an expression that evaluates to 1 if and only if all inputs are equivalent.

Unequal(*args, simplify=True)
Return an expression that evaluates to 1 if and only if not all inputs are equivalent.

Implies(p, q, simplify=True)
Return an expression that implements Boolean implication (𝑝 =⇒ 𝑞).

𝑝 𝑞 𝑝 =⇒ 𝑞
0 0 1
0 1 1
1 0 0
1 1 1

Note that this truth table is equivalent to 𝑝 ≤ 𝑞, but Boolean implication is by far the more common form due to its
use in propositional logic.

ITE(s, d1, d0, simplify=True)
Return an expression that implements the Boolean “if, then, else” operator. If 𝑠 = 1, then the output equals 𝑑0.
Otherwise (𝑠 = 0), the output equals 𝑑1.
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𝑠 𝑑1 𝑑0 𝑖𝑡𝑒(𝑠, 𝑑1, 𝑑0)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

High Order Operators

A high order operator is a Boolean operator that can NOT be natively represented as a PyEDA expression. That is,
these factory functions will always return expressions composed from primary and/or secondary operators.

OneHot0(*args, simplify=True, conj=True)
Return an expression that evaluates to 1 if and only if the number of inputs equal to 1 is at most 1. That is, return
true when at most one input is “hot”.

OneHot(*args, simplify=True, conj=True)
Return an expression that evaluates to 1 if and only if exactly one input is equal to 1. That is, return true when
exactly one input is “hot”.

Majority(*args, simplify=True, conj=False)
Return an expression that evaluates to 1 if and only if the majority of inputs equal 1.

The full adder circuit has a much more dense representation when you use both the Xor and Majority operators:

>>> s = Xor(’a’, ’b’, ’ci’)
>>> co = Majority(’a’, ’b’, ’ci’)

AchillesHeel(*args, simplify=True)
Return the Achille’s Heel function, defined as

∏︀𝑁−1
𝑖=0 (𝑥𝑖/2 + 𝑥𝑖/2+1).

The AchillesHeel function has 𝑁 literals in its CNF form, but 𝑁/2 × 2𝑁/2 literals in its DNF form. It is an
interesting demonstration of tradeoffs when choosing an expression representation. For example:

>>> f = AchillesHeel(’a’, ’b’, ’c’, ’d’, ’w’, ’x’, ’y’, ’z’)
>>> f
And(Or(a, b), Or(c, d), Or(w, x), Or(y, z))
>>> f.to_dnf()
Or(And(a, c, w, y), And(a, c, w, z), And(a, c, x, y), And(a, c, x, z), And(a, d, w, y), And(a, d, w, z), And(a, d, x, y), And(a, d, x, z), And(b, c, w, y), And(b, c, w, z), And(b, c, x, y), And(b, c, x, z), And(b, d, w, y), And(b, d, w, z), And(b, d, x, y), And(b, d, x, z))

Mux(fs, sel, simplify=True)
Return an expression that multiplexes a sequence of input functions over a sequence of select functions.

For example:

>>> X = exprvars(’x’, 4)
>>> S = exprvars(’s’, 2)
>>> Mux(X, S)
Or(And(~s[0], ~s[1], x[0]), And(s[0], ~s[1], x[1]), And(~s[0], s[1], x[2]), And(s[0], s[1], x[3]))

From the expr Function

expr(arg, simplify=True)
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The expr function is very special. It will attempt to convert the input argument to an Expression object.

We have already seen how the expr function converts a Python bool input to a constant expression:

>>> expr(False)
0

Now let’s pass a str as the input argument:

>>> expr(’0’)
0

If given an input string, the expr function will attempt to parse the input string and return an expression.

Examples of input expressions:

>>> expr("~a & b | ~c & d")
Or(And(~a, b), And(~c, d))
>>> expr("a | b ^ c & d")
Or(a, Xor(b, And(c, d)))
>>> expr("p => q")
Implies(p, q)
>>> expr("p <=> q")
Equal(p, q)
>>> expr("s ? d[1] : d[0]")
ITE(s, d[1], d[0])
>>> expr("Or(a, b, Not(c))")
Or(a, b, ~c)
>>> expr("Majority(a, b, c)")
Or(And(a, b), And(a, c), And(b, c))

Operator Precedence Table (lowest to highest):

Operator Description
s ? d1 : d0 If Then Else
=> <=> Binary Implies, Binary Equal
| Binary OR
^ Binary XOR
& Binary AND
~x Unary NOT
(expr ...) OP(expr ...) Parenthesis, Explicit operators

The full list of valid operators accepted by the expression parser:

• Or(...)

• And(...)

• Xor(...)

• Xnor(...)

• Equal(...)

• Unequal(...)

• Nor(...)

• Nand(...)

• OneHot0(...)

• OneHot(...)

• Majority(...)
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• AchillesHeel(...)

• ITE(s, d1, d0)

• Implies(p, q)

• Not(a)

1.5.4 Expression Types

This section will cover the hierarchy of Boolean expression types.

Unsimplified

An unsimplified expression consists of the following components:

• Constants

• Expressions that can easily be converted to constants (eg 𝑥+ 𝑥′ = 1)

• Literals

• Primary operators: Not, Or, And

• Secondary operators

Also, an unsimplified expression does not automatically join adjacent, associative operators. For example, 𝑎+ (𝑏+ 𝑐)
is equivalent to 𝑎+ 𝑏+ 𝑐. The depth of the unsimplified expression is two:

>>> f = Or(’a’, Or(’b’, ’c’), simplify=False)
>>> f.args
(a, Or(b, c))
>>> f.depth
2

The depth of the simplified expression is one:

>>> g = f.simplify()
>>> g.args
(b, a, c)
>>> g.depth
1

If the simplify=False usage is too verbose, you can use the Expression subclasses directly to create unsim-
plified expressions:

>>> ExprAnd(a, ~a)
And(~a, a)
>>> ExprOr(a, ExprOr(b, c))
Or(a, Or(b, c))

Notice that there are no unsimplified representations for:

• degenerate forms

• negated literals

• double negation

For example:
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>>> ExprOr()
0
>>> ExprNot(a)
~a
>>> ExprNot(ExprNand(a, b))
And(a, b)

Simplifed

A simplified expression consists of the following components:

• Literals

• Primary operators: Not, Or, And

• Secondary operators

Also, 0 and 1 are considered simplified by themselves.

That is, the act of simplifying an expression eliminates constants, and all sub-expressions that can be easily converted
to constants.

All expressions constructed using overloaded operatiors are automatically simplified:

>>> a | 0
a
>>> a | 1
1
>>> a | b & ~b
a

Unsimplified expressions are not very useful, so the factory functions also simplify by default:

>>> Or(a, And(b, ~b))
a

To simplify an expression, use the simplify method:

>>> f = Or(a, 0, simplify=False)
>>> f
Or(0, a)
>>> g = f.simplify()
>>> g
a

You can check whether an expression is simplified using the simplified attribute:

>>> f.simplified
False
>>> g.simplified
True

Factored

A factored expression consists of the following components:

• Literals

• Primary operators: Or, And
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That is, the act of factoring an expression converts all secondary operators to primary operators, and uses DeMorgan’s
transform to eliminate Not operators.

You can factor all secondary operators:

>>> Xor(a, b, c).factor()
Or(And(~a, ~b, c), And(~a, b, ~c), And(a, ~b, ~c), And(a, b, c))
>>> Implies(p, q).factor()
Or(~p, q)
>>> Equal(a, b, c).factor()
Or(And(~a, ~b, ~c), And(a, b, c))
>>> ITE(s, a, b).factor()
Or(And(b, Or(a, b, ~ci), Or(a, ~b, ci)), And(a, Or(And(~a, ~b, ci), And(~a, b, ~ci))))

Factoring also eliminates all Not operators, by using DeMorgan’s law:

>>> Not(a | b).factor()
And(~a, ~b)
>>> Not(a & b).factor()
Or(~a, ~b)

Normal Form

A normal form expression is a factored expression with depth less than or equal to two.

That is, a normal form expression has been factored, and flattened.

There are two types of normal forms:

• disjunctive normal form (SOP: sum of products)

• conjunctive normal form (POS: product of sums)

The preferred method for creating normal form expressions is to use the to_dnf and to_cnf methods:

>>> f = Xor(a, Implies(b, c))
>>> f.to_dnf()
Or(And(~a, ~b), And(~a, c), And(a, b, ~c))
>>> f.to_cnf()
And(Or(~a, b), Or(~a, ~c), Or(a, ~b, c))

Canonical Normal Form

A canonical normal form expression is a normal form expression with the additional property that all terms in the
expression have the same degree as the expression itself.

That is, a canonical normal form expression has been factored, flattened, and reduced.

The preferred method for creating canonical normal form expressions is to use the to_cdnf and to_ccnf methods.

Using the same function from the previous section as an example:

>>> f = Xor(a, Implies(b, c))
>>> f.to_cdnf()
Or(And(~a, ~b, ~c), And(~a, ~b, c), And(~a, b, c), And(a, b, ~c))
>>> f.to_ccnf()
And(Or(a, ~b, c), Or(~a, b, c), Or(~a, b, ~c), Or(~a, ~b, ~c))
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1.5.5 Depth

Expressions are a type of tree data structure. The depth of a tree is defined recursively:

1. A leaf node (constant or literal) has zero depth.

2. A branch node (operator) has depth equal to the maximum depth of its children (arguments) plus one.

You can think of the depth as the maximum number of operators between the expression’s inputs to its output.

For example:

>>> a.depth
0
>>> (a & b).depth
1
>>> Xor(a, Implies(b, c)).depth
2

1.5.6 Satisfiability

Expressions have smart support for Boolean satisfiability.

They inherit both the satisfy_one and satisfy_all methods from the Function interface.

For example:

>>> f = Xor(’a’, Implies(’b’, ’c’))
>>> f.satisfy_one()
{a: 0, b: 0}
>>> list(f.satisfy_all())
[{a: 0, b: 0}, {a: 0, b: 1, c: 1}, {a: 1, b: 1, c: 0}]

By default, Boolean expressions use a very naive “backtracking” algorithm to solve for satisfying input points. Since
SAT is an NP-complete algorithm, you should always use care when preparing your inputs.

A conjunctive normal form expression will automatically use the PicoSAT C extension. This is an industrial-strength
SAT solver, and can be used to solve very non-trivial problems.

>>> g = f.to_cnf()
>>> g.satisfy_one()
{a: 0, b: 0, c: 1}
>>> list(g.satisfy_all())
[{a: 0, b: 1, c: 1},
{a: 0, b: 0, c: 0},
{a: 0, b: 0, c: 1},
{a: 1, b: 1, c: 0}]

Note: Future versions of PyEDA might support additional C/C++ extensions for SAT solving. This is an active area
of research, and no single solver is ideal for all cases.

Assumptions

A common pattern in SAT-solving is to setup a large database of clauses, and attempt to solve the CNF several times
with different simplifying assumptions. This is equivalent to adding unit clauses to the database, which can be easily
eliminated by boolean constraint propagation.
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The Expression data type supports applying assumptions using the with statement. Here is an example of creating
a nested context of literals that assumes a=1 and b=0:

>>> f = Xor(a, b, c)
>>> with a, ~b:
... print(f.satisfy_one())
{a: 1, b: 0, c: 0}

There are four satisfying solutions to this function, but the return value will always correspond to the input assumptions.

And terms of literals (clauses) may also be used as assumptions:

>>> with a & ~b:
... print(f.satisfy_one())
{a: 1, b: 0, c: 0}

Note that it is an error to assume conflicting values for a literal:

>>> with a, ~a:
... print(f.satisfy_one())
ValueError: conflicting constraints: a, ~a

PicoSAT Script

Starting with version 0.23.0, PyEDA includes a script that implements some of the functionality of the PicoSAT
command-line utility.

$ picosat -h
usage: picosat [-h] [--version] [-n] [-a LIT] [-v] [-i {0,1,2,3}] [-P LIMIT]

[-l LIMIT] [--all]
[file]

PicoSAT solver

positional arguments:
file CNF input file (default: stdin)

optional arguments:
-h, --help show this help message and exit
--version print version and exit
...

Here is an example of a basic SAT problem encoded using the well-known DIMACS CNF format. See
http://www.satcompetition.org/ for details on expected inputs and outputs. The function is a one-hot function on
four input variables.

$ cat onehot4.cnf
c Comments start with a ’c’ character
c The problem ’p’ line is followed by clauses
p cnf 4 7
1 2 3 4 0
-4 -3 0
-4 -2 0
-4 -1 0
-3 -2 0
-3 -1 0
-2 -1 0

To get one satisfying solution:
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$ picosat onehot4.cnf
s SATISFIABLE
v -1 -2 -3 4 0

To get all satisfying solutions:

$ picosat --all onehot4.cnf
s SATISFIABLE
v -1 -2 -3 4 0
s SATISFIABLE
v -1 -2 3 -4 0
s SATISFIABLE
v -1 2 -3 -4 0
s SATISFIABLE
v 1 -2 -3 -4 0
s SOLUTIONS 4

You can also constrain the solver with one or more assumptions:

$ picosat -a 1 -a -2 onehot4.cnf
s SATISFIABLE
v 1 -2 -3 -4 0
$ picosat -a 1 -a 2 onehot4.cnf
s UNSATISFIABLE

1.5.7 Tseitin’s Encoding

To take advantage of the PicoSAT solver, you need an expression that is in conjunctive normal form. Some expressions
(especially Xor) have exponentially large size when you expand them to a CNF.

One way to work around this limitation is to use Tseitin’s encoding. To convert an expression to Tseitin’s encoding,
use the tseitin method:

>>> f = Xor(’a’, Implies(’b’, ’c’))
>>> tf = f.tseitin()
>>> tf
And(Or(a, ~aux[0]), Or(~a, aux[0], ~b, c), Or(~a, ~aux[2]), Or(a, ~aux[1], aux[2]), Or(aux[0], aux[2]), Or(~aux[0], b), Or(~aux[0], ~c), Or(aux[1], ~aux[2]), Or(aux[1], b), Or(aux[1], ~c), Or(~aux[1], ~b, c))

As you can see, Tseitin’s encoding introduces several “auxiliary” variables into the expression.

You can change the name of the auxiliary variable by using the auxvarname parameter:

>>> f = Xor(’a’, Implies(’b’, ’c’))
>>> f.tseitin(auxvarname=’z’)
And(Or(a, ~z[0]), Or(~a, ~b, c, z[0]), Or(~a, ~z[2]), Or(a, ~z[1], z[2]), Or(b, z[1]), Or(~b, c, ~z[1]), Or(b, ~z[0]), Or(~c, ~z[0]), Or(~c, z[1]), Or(z[0], z[2]), Or(z[1], ~z[2]))

You will see the auxiliary variables in the satisfying points:

>>> tf.satisfy_one()
{a: 0, aux[0]: 0, aux[1]: 1, aux[2]: 1, b: 0, c: 1}
>>> list(tf.satisfy_all())
[{a: 1, aux[0]: 0, aux[1]: 0, aux[2]: 1, b: 1, c: 0},
{a: 0, aux[0]: 1, aux[1]: 1, aux[2]: 0, b: 1, c: 1},
{a: 0, aux[0]: 1, aux[1]: 1, aux[2]: 0, b: 0, c: 0},
{a: 0, aux[0]: 1, aux[1]: 1, aux[2]: 0, b: 0, c: 1}]

Just filter them out to get the answer you’re looking for:
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>>> [{v: val for v, val in point.items() if v.name != ’aux’} for point in tf.satisfy_all()]
[{a: 1, b: 1, c: 0},
{a: 0, b: 1, c: 1},
{a: 0, b: 0, c: 0},
{a: 0, b: 0, c: 1}]

1.5.8 Formal Equivalence

Two Boolean expressions 𝑓 and 𝑔 are formally equivalent if 𝑓 ⊕ 𝑔 is not satisfiable.

Boolean expressions have an equivalent method that implements this basic functionality. It uses the naive back-
tracking SAT, because it is difficult to determine whether any particular expression can be converted efficiently to a
CNF.

Let’s test whether bit 6 of a ripple carry adder is equivalent to bit 6 of a Kogge Stone adder:

>>> from pyeda.logic.addition import ripple_carry_add, kogge_stone_add
>>> A = exprvars(’a’, 16)
>>> B = exprvars(’b’, 16)
>>> S1, C1 = ripple_carry_add(A, B)
>>> S2, C2 = kogge_stone_add(A, B)
>>> S1[6].equivalent(S2[6])
True

Note that this is the same as the following:

>>> Xor(S1[6], S2[6]).satisfy_one() is None
True

1.6 Function Arrays

When dealing with several related Boolean functions, it is usually convenient to index the inputs and outputs. For this
purpose, PyEDA includes a multi-dimensional array (MDA) data type, called an farray (function array).

The most pervasive example is computation involving any numeric data type. For example, let’s say you want to add
two numbers 𝐴, and 𝐵. If these numbers are 32-bit integers, there are 64 total inputs, not including a carry-in. The
conventional way of labeling the input variables is 𝑎0, 𝑎1, 𝑎2, . . ., and 𝑏0, 𝑏1, 𝑏2, . . ..

Furthermore, you can extend the symbolic algebra of Boolean functions to arrays. For example, the element-wise
XOR or 𝐴 and 𝐵 is also an array

This chapter will explain how to construct and manipulate arrays of Boolean functions. Typical examples will be one-
dimensional vectors, but you can shape your data into several dimensions if you like. We have purposefully adopted
many of the conventions used by the numpy.array module.

The code examples in this chapter assume that you have already prepared your terminal by importing all interactive
symbols from PyEDA:

>>> from pyeda.inter import *

1.6.1 Construction

There are three ways to construct farray instances:

1. Use the farray class constructor.
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2. Use one of the zeros/ones/vars factory functions.

3. Use the unsigned/signed integer conversion functions.

Constructor

First, create a few expression variables:

>>> a, b, c, d = map(exprvar, ’abcd’)

To store these variables in an array, invoke the farray constructor on a sequence:

>>> vs = farray([a, b, c, d])
>>> vs
farray([a, b, c, d])
>>> vs[2]
c

Now let’s store some arbitrary functions into an array. Create six expressions using the secondary operators:

>>> f0 = Nor(a, b, c)
>>> f1 = Nand(a, b, c)
>>> f2 = Xor(a, b, c)
>>> f3 = Xnor(a, b, c)
>>> f4 = Equal(a, b, c)
>>> f5 = Unequal(a, b, c)

To neatly store these six functions in an farray, invoke the constructor like we did before:

>>> F = farray([f0, f1, f2, f3, f4, f5])
>>> F
farray([Nor(a, b, c), Nand(a, b, c), Xor(a, b, c), Xnor(a, b, c), Equal(a, b, c), Unequal(a, b, c)])

This is sufficient for 1-D arrays, but the farray constructor can create mult-dimensional arrays as well. You can
apply shape to the input array by either using a nested sequence, or manually using the shape parameter.

To create a 2x3 array using a nested sequence:

>>> F = farray([[f0, f2, f4], [f1, f3, f5]])
>>> F
farray([[Nor(a, b, c), Xor(a, b, c), Equal(a, b, c)],

[Nand(a, b, c), Xnor(a, b, c), Unequal(a, b, c)]])
>>> F.shape
((0, 2), (0, 3))
>>> F.size
6
>>> F[0,1]
Xor(a, b, c)

Similarly for a 3x2 array:

>>> F = farray([[f0, f1], [f2, f3], [f4, f5]])
>>> F
farray([[Nor(a, b, c), Nand(a, b, c)],

[Xor(a, b, c), Xnor(a, b, c)],
[Equal(a, b, c), Unequal(a, b, c)]])

>>> F.shape
((0, 3), (0, 2))
>>> F.size
6
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>>> F[0,1]
Nand(a, b, c)

Use the shape parameter to manually impose a shape. It takes a tuple of dimension specs, which are (start,
stop) tuples.

>>> F = farray([f0, f1, f2, f3, f4, f5], shape=((0, 2), (0, 3)))
>>> F
farray([[Nor(a, b, c), Xor(a, b, c), Equal(a, b, c)],

[Nand(a, b, c), Xnor(a, b, c), Unequal(a, b, c)]])

Internally, function arrays are stored in a flat list. You can retrieve the items by using the flat iterator:

>>> list(F.flat)
[Nor(a, b, c),
Nand(a, b, c),
Xor(a, b, c),
Xnor(a, b, c),
Equal(a, b, c),
Unequal(a, b, c)]

Use the reshape method to return a new farray with the same contents and size, but with different dimensions:

>>> F.reshape(3, 2)
farray([[Nor(a, b, c), Nand(a, b, c)],

[Xor(a, b, c), Xnor(a, b, c)],
[Equal(a, b, c), Unequal(a, b, c)]])

Empty Arrays

It is possible to create an empty farray, but only if you supply the ftype parameter. That parameter is not necessary
for non-empty arrays, because it can be automatically determined.

For example:

>>> empty = farray([], ftype=Expression)
>>> empty
farray([])
>>> empty.shape
((0, 0),)
>>> empty.size
0

Irregular Shapes

Without the shape parameter, array dimensions will be created with start index zero. This is fine for most applications,
but in digital design it is sometimes useful to create arrays with irregular starting points.

For example, let’s say you are designing the load/store unit of a CPU. A computer’s memory is addressed in bytes, but
data is accessed from memory in cache lines. If the size of your machine’s cache line is 64 bits, data will be retrieved
from memory eight bytes at a time. The lower 3 bits of the address bus going from the load/store unit to main memory
are not necessary. Therefore, your load/store unit will output an address with one dimension bounded by (3, 32),
i.e. all address bits starting from 3, up to but not including 32.

Going back to the previous example, let’s say for some reason we wanted a shape of ((7, 9), (13, 16)). Just
change the shape parameter:
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>>> F = farray([f0, f1, f2, f3, f4, f5], shape=((7, 9), (13, 16)))
>>> F
farray([[Nor(a, b, c), Xor(a, b, c), Equal(a, b, c)],

[Nand(a, b, c), Xnor(a, b, c), Unequal(a, b, c)]])

The size property is still the same:

>>> F.size
6

However, the slices now have different bounds:

>>> F.shape
((7, 9), (13, 16))
>>> F[7,14]
Nand(a, b, c)

Factory Functions

For convenience, PyEDA provides factory functions for producing arrays with arbitrary shape initialized to all zeros,
all ones, or all variables with incremental indices.

The functions for creating arrays of zeros are:

• pyeda.boolalg.bfarray.bddzeros()

• pyeda.boolalg.bfarray.exprzeros()

• pyeda.boolalg.bfarray.ttzeros()

For example, to create a 4x4 farray of expression zeros:

>>> zeros = exprzeros(4, 4)
>>> zeros
farray([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index).
If a dimension is given as a single int, it will be converted to (0, stop).

For example:

>>> zeros = bddzeros((1, 3), (2, 4), 2)
>>> zeros
farray([[[0, 0],

[0, 0]],

[[0, 0],
[0, 0]]])

Similarly for creating arrays of ones:

• pyeda.boolalg.bfarray.bddones()

• pyeda.boolalg.bfarray.exprones()

• pyeda.boolalg.bfarray.ttones()

The functions for creating arrays of variables are:
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• pyeda.boolalg.bfarray.bddvars()

• pyeda.boolalg.bfarray.exprvars()

• pyeda.boolalg.bfarray.ttvars()

These functions behave similarly to the zeros/ones functions, but take a name argument as well.

For example, to create a 4x4 farray of expression variables:

>>> A = exprvars(’a’, 4, 4)
>>> A
farray([[a[0,0], a[0,1], a[0,2], a[0,3]],

[a[1,0], a[1,1], a[1,2], a[1,3]],
[a[2,0], a[2,1], a[2,2], a[2,3]],
[a[3,0], a[3,1], a[3,2], a[3,3]]])

The name argument accepts a tuple of names, just like the exprvar function, and the variadic dims input also supports
irregular shapes:

>>> A = exprvars((’a’, ’b’, ’c’), (1, 3), (2, 4), 2)
>>> A
farray([[[c.b.a[1,2,0], c.b.a[1,2,1]],

[c.b.a[1,3,0], c.b.a[1,3,1]]],

[[c.b.a[2,2,0], c.b.a[2,2,1]],
[c.b.a[2,3,0], c.b.a[2,3,1]]]])

Integer Conversion

The previous section discussed ways to initialize arrays to all zeros or ones. It is also possible to create one-dimensional
arrays that represent integers using either the unsigned or twos-complement notations.

The following functions convert an unsigned integer to a 1-D farray:

• pyeda.boolalg.bfarray.uint2bdds()

• pyeda.boolalg.bfarray.uint2exprs()

• pyeda.boolalg.bfarray.uint2tts()

The following functions convert a signed integer to a 1-D farray:

• pyeda.boolalg.bfarray.int2bdds()

• pyeda.boolalg.bfarray.int2exprs()

• pyeda.boolalg.bfarray.int2tts()

The signature for these functions are all identical. The num argument is the int to convert, and the length parameter
is optional. Unsigned conversion will always zero-extend to the provided length, and signed conversion will always
sign-extend.

Here are a few examples of converting integers to expressions:

>>> uint2exprs(42, 8)
farray([0, 1, 0, 1, 0, 1, 0, 0])
>>> int2exprs(42, 8)
farray([0, 1, 0, 1, 0, 1, 0, 0])
# A nifty one-liner to verify the previous conversions
>>> bin(42)[2:].zfill(8)[::-1]
’01010100’
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>>> int2exprs(-42, 8)
farray([0, 1, 1, 0, 1, 0, 1, 1])

Function arrays also have to_uint and to_intmethods to perform the reverse computation. They do not, however,
have any property to indicate whether the array represents signed data. So always know what the encoding is ahead of
time. For example:

>>> int2exprs(-42, 8).to_int()
-42
>>> int2exprs(-42, 8).to_uint()
214

1.6.2 Slicing

The farray type accepts two types of slice arguments:

• Integral indices

• Muliplexor selects

Integral Indices

Function arrays support a slice syntax that mostly follows the numpy ndarray data type. The primary difference is that
farray supports nonzero start indices.

To demonstrate the various capabilities, let’s create some arrays. For simplicity, we will only use zero indexing.

>>> A = exprvars(’a’, 4)
>>> B = exprvars(’b’, 4, 4, 4)

Using a single integer index will collapse an array dimension. For 1-D arrays, this means returning an item.

>>> A[2]
a[2]
>>> B[2]
farray([[b[2,0,0], b[2,0,1], b[2,0,2], b[2,0,3]],

[b[2,1,0], b[2,1,1], b[2,1,2], b[2,1,3]],
[b[2,2,0], b[2,2,1], b[2,2,2], b[2,2,3]],
[b[2,3,0], b[2,3,1], b[2,3,2], b[2,3,3]]])

>>> B[2].shape
((0, 4), (0, 4))

The colon : slice syntax shrinks a dimension:

>>> A[:]
farray([a[0], a[1], a[2], a[3]])
>>> A[1:]
farray([a[1], a[2], a[3]])
>>> A[:3]
farray([a[0], a[1], a[2]])
>>> B[1:3]
farray([[[b[1,0,0], b[1,0,1], b[1,0,2], b[1,0,3]],

[b[1,1,0], b[1,1,1], b[1,1,2], b[1,1,3]],
[b[1,2,0], b[1,2,1], b[1,2,2], b[1,2,3]],
[b[1,3,0], b[1,3,1], b[1,3,2], b[1,3,3]]],

[[b[2,0,0], b[2,0,1], b[2,0,2], b[2,0,3]],
[b[2,1,0], b[2,1,1], b[2,1,2], b[2,1,3]],
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[b[2,2,0], b[2,2,1], b[2,2,2], b[2,2,3]],
[b[2,3,0], b[2,3,1], b[2,3,2], b[2,3,3]]]])

For N-dimensional arrays, the slice accepts up to N indices separated by a comma. Unspecified slices at the end will
default to :.

>>> B[1,2,3]
b[1,2,3]
>>> B[:,2,3]
farray([b[0,2,3], b[1,2,3], b[2,2,3], b[3,2,3]])
>>> B[1,:,3]
farray([b[1,0,3], b[1,1,3], b[1,2,3], b[1,3,3]])
>>> B[1,2,:]
farray([b[1,2,0], b[1,2,1], b[1,2,2], b[1,2,3]])
>>> B[1,2]
farray([b[1,2,0], b[1,2,1], b[1,2,2], b[1,2,3]])

The ... syntax will fill available indices left to right with :. Only one ellipsis will be recognized per slice.

>>> B[...,1]
farray([[b[0,0,1], b[0,1,1], b[0,2,1], b[0,3,1]],

[b[1,0,1], b[1,1,1], b[1,2,1], b[1,3,1]],
[b[2,0,1], b[2,1,1], b[2,2,1], b[2,3,1]],
[b[3,0,1], b[3,1,1], b[3,2,1], b[3,3,1]]])

>>> B[1,...]
farray([[b[1,0,0], b[1,0,1], b[1,0,2], b[1,0,3]],

[b[1,1,0], b[1,1,1], b[1,1,2], b[1,1,3]],
[b[1,2,0], b[1,2,1], b[1,2,2], b[1,2,3]],
[b[1,3,0], b[1,3,1], b[1,3,2], b[1,3,3]]])

Function arrays support negative indices. Arrays with a zero start index follow Python’s usual conventions.

For example, here is the index guide for A[0:4]:

+------+------+------+------+
| a[0] | a[1] | a[2] | a[3] |
+------+------+------+------+
0 1 2 3 4

-4 -3 -2 -1

And example usage:

>>> A[-1]
a[3]
>>> A[-3:-1]
farray([a[1], a[2]])

Arrays with non-zero start indices also support negative indices. For example, here is the index guide for A[3:7]:

+------+------+------+------+
| a[3] | a[4] | a[5] | a[6] |
+------+------+------+------+
3 4 5 6 7

-4 -3 -2 -1

Multiplexor Selects

A special feature of array slicing is the ability to multiplex array items over a select input. For a 2:1 mux, the select
may be a single function. Otherwise, it must be an farray with enough bits.
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For example, to create a simple 8:1 mux:

>>> X = exprvars(’x’, 8)
>>> sel = exprvars(’s’, 3)
>>> X[sel]
Or(And(~s[0], ~s[1], ~s[2], x[0]),

And( s[0], ~s[1], ~s[2], x[1]),
And(~s[0], s[1], ~s[2], x[2]),
And( s[0], s[1], ~s[2], x[3]),
And(~s[0], ~s[1], s[2], x[4]),
And( s[0], ~s[1], s[2], x[5]),
And(~s[0], s[1], s[2], x[6]),
And( s[0], s[1], s[2], x[7]))

This works for multi-dimensional arrays as well:

>>> s = exprvar(’s’)
>>> Y = exprvars(’y’, 2, 2, 2)
>>> Y[:,s,:]
farray([[Or(And(~s, y[0,0,0]),

And( s, y[0,1,0])),
Or(And(~s, y[0,0,1]),

And( s, y[0,1,1]))],

[Or(And(~s, y[1,0,0]),
And( s, y[1,1,0])),

Or(And(~s, y[1,0,1]),
And( s, y[1,1,1]))]])

1.6.3 Operators

Function arrays support several operators for algebraic manipulation. Some of these operators overload Python’s
operator symbols. This section will describe how you can use the farray data type and the Python interpreter to
perform powerful symbolic computations.

Unary Reduction

A common operation is to reduce the entire contents of an array to a single function. This is supported by the OR,
AND, and XOR operators because they are 1) variadic, and 2) associative.

Unfortunately, Python has no appropriate symbols available, so unary operators are supported by the following
farray methods:

• pyeda.boolalg.bfarray.farray.uor()

• pyeda.boolalg.bfarray.farray.unor()

• pyeda.boolalg.bfarray.farray.uand()

• pyeda.boolalg.bfarray.farray.unand()

• pyeda.boolalg.bfarray.farray.uxor()

• pyeda.boolalg.bfarray.farray.uxnor()

For example, to OR the contents of an eight-bit array:
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>>> X = exprvars(’x’, 8)
>>> X.uor()
Or(x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7])

One well-known usage of unary reduction is conversion from a binary-reflected gray code (BRGC) back to binary. In
the following example, B is a 3-bit array that contains logic to convert the contents of G from gray code to binary. See
the Wikipedia Gray Code article for background.

>>> G = exprvars(’g’, 3)
>>> B = farray([G[i:].uxor() for i, _ in enumerate(G)])
>>> graycode = [’000’, ’100’, ’110’, ’010’, ’011’, ’111’, ’101’, ’001’]
>>> for gs in graycode:
... print(B.vrestrict({X: gs}).to_uint())
0
1
2
3
4
5
6
7

Bit-wise Logic

Arrays are an algebraic data type. They overload several of Python’s operators to perform bit-wise logic.

First, let’s create a few arrays:

>>> A = exprvars(’a’, 4)
>>> B = exprvars(’b’, 4)
>>> C = exprvars(’c’, 2, 2)
>>> D = exprvars(’d’, 2, 2)

To invert the contents of A:

>>> ~A
farray([~a[0], ~a[1], ~a[2], ~a[3]])

Inverting a multi-dimensional array will retain its shape:

>>> ~C
farray([[~c[0,0], ~c[0,1]],

[~c[1,0], ~c[1,1]]])

The binary OR, AND, and XOR operators work for arrays with equal size:

>>> A | B
farray([Or(a[0], b[0]), Or(a[1], b[1]), Or(a[2], b[2]), Or(a[3], b[3])])
>>> A & B
farray([And(a[0], b[0]), And(a[1], b[1]), And(a[2], b[2]), And(a[3], b[3])])
>>> C ^ D
farray([[Xor(c[0,0], d[0,0]), Xor(c[0,1], d[0,1])],

[Xor(c[1,0], d[1,0]), Xor(c[1,1], d[1,1])]])

Mismatched sizes will raise an exception:

>>> A & B[2:]
Traceback (most recent call last):
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...
ValueError: expected operand sizes to match

For arrays of the same size but different shape, the resulting shape is ambiguous so by default the result is flattened:

>>> Y = ~A | C
>>> Y
farray([Or(~a[0], c[0,0]), Or(~a[1], c[0,1]), Or(~a[2], c[1,0]), Or(~a[3], c[1,1])])
>>> Y.size
4
>>> Y.shape
((0, 4),)

Shifts

Function array have three shift methods:

• pyeda.boolalg.bfarray.farray.lsh(): logical left shift

• pyeda.boolalg.bfarray.farray.rsh(): logical right shift

• pyeda.boolalg.bfarray.farray.arsh(): arithmetic right shift

The logical left/right shift operators shift out num items from the array, and optionally shift in values from a cin
(carry-in) parameter. The output is a two-tuple of the shifted array, and the “carry-out”.

The “left” direction in lsh shifts towards the most significant bit. For example:

>>> X = exprvars(’x’, 8)
>>> X.lsh(4)
(farray([0, 0, 0, 0, x[0], x[1], x[2], x[3]]),
farray([x[4], x[5], x[6], x[7]]))

>>> X.lsh(4, exprvars(’y’, 4))
(farray([y[0], y[1], y[2], y[3], x[0], x[1], x[2], x[3]]),
farray([x[4], x[5], x[6], x[7]]))

Similarly, the “right” direction in rsh shifts towards the least significant bit. For example:

>>> X.rsh(4)
(farray([x[4], x[5], x[6], x[7], 0, 0, 0, 0]),
farray([x[0], x[1], x[2], x[3]]))

>>> X.rsh(4, exprvars(’y’, 4))
(farray([x[4], x[5], x[6], x[7], y[0], y[1], y[2], y[3]]),
farray([x[0], x[1], x[2], x[3]]))

You can use the Python overloaded << and >> operators for lsh, and rsh, respectively. The only difference is that
they do not produce a carry-out. For example:

>>> X << 4
farray([0, 0, 0, 0, x[0], x[1], x[2], x[3]])
>>> X >> 4
farray([x[4], x[5], x[6], x[7], 0, 0, 0, 0])

Using a somewhat awkward (num, farray) syntax, you can use these operators with a carry-in. For example:

>>> X << (4, exprvars(’y’, 4))
farray([y[0], y[1], y[2], y[3], x[0], x[1], x[2], x[3]])
>>> X >> (4, exprvars(’y’, 4))
farray([x[4], x[5], x[6], x[7], y[0], y[1], y[2], y[3]])
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An arithmetic right shift automatically sign-extends the array. Therefore, it does not take a carry-in. For example:

>>> X.arsh(4)
(farray([x[4], x[5], x[6], x[7], x[7], x[7], x[7], x[7]]),
farray([x[0], x[1], x[2], x[3]]))

Due to its importance in digital design, Verilog has a special >>> operator for an arithmetic right shift. Sadly, Python
has no such indulgence. If you really want to use a symbol, you can use the cin parameter to achieve the same effect
with >>:

>>> num = 4
>>> X >> (num, num * X[-1])
farray([x[4], x[5], x[6], x[7], x[7], x[7], x[7], x[7]])

Concatenation and Repetition

Two very important operators in hardware description languages are concatenation and repetition of logic vectors. For
example, in this implementation of the xtime function from the AES standard, xtime[6:0] is concatenated with
1’b0, and xtime[7] is repeated eight times before being AND’ed with 8’h1b.

function automatic logic [7:0]
xtime(logic [7:0] b, int n);

xtime = b;
for (int i = 0; i < n; i++)

xtime = {xtime[6:0], 1’b0} // concatenation
^ (8’h1b & {8{xtime[7]}}); // repetition

endfunction

The farray data type resembles the Python tuple for these operations.

To concatenate two arrays, use the + operator:

>>> X = exprvars(’x’, 4)
>>> Y = exprvars(’y’, 4)
>>> X + Y
farray([x[0], x[1], x[2], x[3], y[0], y[1], y[2], y[3]])

It is also possible to prepend or append single functions:

>>> a, b = map(exprvar, ’ab’)
>>> a + X
farray([a, x[0], x[1], x[2], x[3]])
>>> X + b
farray([x[0], x[1], x[2], x[3], b])
>>> a + X + b
farray([a, x[0], x[1], x[2], x[3], b])
>>> a + b
farray([a, b])

Even 0 (or False) and 1 (or True) work:

>>> 0 + X
farray([0, x[0], x[1], x[2], x[3]])
>>> X + True
farray([x[0], x[1], x[2], x[3], 1])

To repeat arrays, use the * operator:
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>>> X * 2
farray([x[0], x[1], x[2], x[3], x[0], x[1], x[2], x[3]])
>>> 0 * X
farray([])

Similarly, this works for single functions as well:

>>> a * 3
farray([a, a, a])
>>> 2 * a + b * 3
farray([a, a, b, b, b])

Multi-dimensional arrays are automatically flattened during either concatenation or repetition:

>>> Z = exprvars(’z’, 2, 2)
>>> X + Z
farray([x[0], x[1], x[2], x[3], z[0,0], z[0,1], z[1,0], z[1,1]])
>>> Z * 2
farray([z[0,0], z[0,1], z[1,0], z[1,1], z[0,0], z[0,1], z[1,0], z[1,1]])

If you require a more subtle treatment of the shapes, use the reshape method to unflatten things:

>>> (Z*2).reshape(2, 4)
farray([[z[0,0], z[0,1], z[1,0], z[1,1]],

[z[0,0], z[0,1], z[1,0], z[1,1]]])

Function arrays also support the “in-place” += and *= operators. The farray behaves like an immutable object.
That is, it behaves more like the Python tuple than a list.

For example, when you concatenate/repeat an farray, it returns a new farray:

>>> A = exprvars(’a’, 4)
>>> B = exprvars(’b’, 4)
>>> id(A)
3050928972
>>> id(B)
3050939660
>>> A += B
>>> id(A)
3050939948
>>> B *= 2
>>> id(B)
3050940716

The A += B implementation is just syntactic sugar for:

>>> A = A + B

And the A *= 2 implementation is just syntactic sugar for:

>>> A = A * 2

To wrap up, let’s re-write the xtime function using PyEDA function arrays.

def xtime(b, n):
"""Return b^n using polynomial multiplication in GF(2^8)."""
for _ in range(n):

b = exprzeros(1) + b[:7] ^ uint2exprs(0x1b, 8) & b[7]*8
return b
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1.7 Two-level Logic Minimization

This chapter will explain how to use PyEDA to minimize two-level “sum-of-products” forms of Boolean functions.

Logic minimization is known to be an NP-complete problem. It is equivalent to finding a minimal-cost set of subsets of
a set 𝑆 that covers 𝑆. This is sometimes called the “paving problem”, because it is conceptually similar to finding the
cheapest configuration of tiles that cover a floor. Due to the complexity of this operation, PyEDA uses a C extension
to the famous Berkeley Espresso library 6.

All examples in this chapter assume you have interactive symbols imported:

>>> from pyeda.inter import *

1.7.1 Minimize Boolean Expressions

Consider the three-input function 𝑓1 = 𝑎 · 𝑏′ · 𝑐′ + 𝑎′ · 𝑏′ · 𝑐+ 𝑎 · 𝑏′ · 𝑐+ 𝑎 · 𝑏 · 𝑐+ 𝑎 · 𝑏 · 𝑐′

>>> a, b, c = map(exprvar, ’abc’)
>>> f1 = ~a & ~b & ~c | ~a & ~b & c | a & ~b & c | a & b & c | a & b & ~c

To use Espresso to perform minimization:

>>> f1m, = espresso_exprs(f1)
>>> f1m
Or(And(~a, ~b), And(a, b), And(~b, c))

Notice that the espresso_exprs function returns a tuple. The reason is that this function can minimize multiple
input functions simultaneously. To demonstrate, let’s create a second function 𝑓2 = 𝑎′ · 𝑏′ · 𝑐+ 𝑎 · 𝑏′ · 𝑐.

>>> f2 = ~a & ~b & c | a & ~b & c
>>> f1m, f2m = espresso_exprs(f1, f2)
>>> f1m
Or(And(~a, ~b), And(a, b), And(~b, c))
>>> f2m
And(~b, c)

It’s easy to verify that the minimal functions are equivalent to the originals:

>>> f1.equivalent(f1m)
True
>>> f2.equivalent(f2m)
True

1.7.2 Minimize Truth Tables

An expression is a completely specified function. Sometimes, instead of minimizing an existing expression, you
instead start with only a truth table that maps inputs in 0, 1 to outputs in 0, 1, *, where * means “don’t care”. For
this type of incompletely specified function, you may use the espresso_tts function to find a low-cost, equivalent
Boolean expression.

Consider the following truth table with four inputs and two outputs:

6 R. Brayton, G. Hatchel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, Kluwer Academic
Publishers, Boston, MA, 1984.
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Inputs Outputs
x3 x2 x1 x0 f1 f2
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 0 1 1 1
0 1 1 0 1 1
0 1 1 1 1 1
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 X X
1 0 1 1 X X
1 1 0 0 X X
1 1 0 1 X X
1 1 1 0 X X
1 1 1 1 X X

The espresso_tts function takes a sequence of input truth table functions, and returns a sequence of DNF expres-
sion instances.

>>> X = ttvars(’x’, 4)
>>> f1 = truthtable(X, "0000011111------")
>>> f2 = truthtable(X, "0001111100------")
>>> f1m, f2m = espresso_tts(f1, f2)
>>> f1m
Or(x[3], And(x[0], x[2]), And(x[1], x[2]))
>>> f2m
Or(x[2], And(x[0], x[1]))

You can test whether the resulting expressions are equivalent to the original truth tables by visual inspection (or some
smarter method):

>>> expr2truthtable(f1m)
inputs: x[3] x[2] x[1] x[0]
0000 0
0001 0
0010 0
0011 0
0100 0
0101 1
0110 1
0111 1
1000 1
1001 1
1010 1
1011 1
1100 1
1101 1
1110 1
1111 1
>>> expr2truthtable(f2m)
inputs: x[2] x[1] x[0]
000 0
001 0
010 0
011 1
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100 1
101 1
110 1
111 1

1.7.3 Espresso Script

Starting with version 0.20, PyEDA includes a script that implements some of the functionality of the original
Espresso command-line utility.

$ espresso -h
usage: espresso [-h] [-e {fast,ness,nirr,nunwrap,onset,strong}] [--fast]

[--no-ess] [--no-irr] [--no-unwrap] [--onset] [--strong]
[file]

Minimize a PLA file

positional arguments:
file PLA file (default: stdin)

optional arguments:
-h, --help show this help message and exit
...

Here is an example of a simple PLA file that is part of the BOOM benchmark suite. This function has 50 input
variables, 5 output variables, and 50 product terms. Also, 20% of the literals in the implicants are “don’t care”.

$ cat extension/espresso/test/bb_all/bb_50x5x50_20%_0.pla
.i 50
.o 5
.p 50
.ilb x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 x38 x39 x40 x41 x42 x43 x44 x45 x46 x47 x48 x49
.ob y0 y1 y2 y3 y4
.type fr
001011110--00--0100-0010-10-01010101-010--01011111 00011
0-1-1010-01000100--11011-0110001010-10001010-1-1-0 00100
0111010111110110110-100101101010010001111----1-011 10000
01-0010011-001110--000-011--11--1-0100-01101--1000 00001
001011010-1100000001101--10100-010-001100111110010 00101
011-01010-10-1101110-00-1-11001-1-0000--1-1-00-000 00011
0000000011001-0000010-000110-11011001110--100-1-10 00110
00-111111-00100-100111101000-11101100--0-1110-1-10 10001
-1-10011011000011--00-0011011101-1-1101110--1-001- 11100
-0101100-110111-010-01110-0110011-1-1---1001011111 11000
0-111011101000-11-1--10-0001001101000010-11-111101 11001
11000000-1-01--1111-10111111----0010--1-0--1--0111 01010
00-101000011-1-10101101-1101011-0101000-111111011- 11011
1-00-11111-0010-0---000--0110-0010111--000001-0001 11011
-1-1100100001--00--00001000-1-1--100-0111-00011011 11000
0-0000-010-11-1100-101-00101000111-01--11-0010-011 10000
11-1-0001100101-10-0-1-0-1100010101111-1111000-101 11101
10-01--10011111-11011-001001101100110010010-000-0- 01110
1-11010-00011101-010--101010--0111010101-11-101--1 00111
11--111-111-111-000-11000-101-1-011--1000--1111100 01111
0---0-10011101000--11001-1100-10-000011-0100011100 11110
-01--11-010-1001011-0-101000100000--10111---100-1- 11101
11-1-000010--00110-011101--11-10-1-0000110100-1101 11010
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-0111110-100-11-110001001100001-100011110001001100 11110
11--00100-01--00-10---11-0001-00011101001011-01110 00000
1--010011-001-0000--0-11-001010001110-00-01-110-11 01101
100011--0101--1-1-0-101--001-0-101-1-1011101011-01 00111
0--0-01-10101-11-0100111111000-1-1011100-111-01111 10100
0-0110010--11101-0---1001-1001--001-110000---1011- 00100
0-1000-0--00000010-0--1011-1001011-01-00-011001111 10000
111-1101111-01001101-111--00-01011111000001-001001 11100
0--100111-1010001-0111-0-000--00-0111101111-101100 11000
00001101100-001001-1010010010011-1101-110-10-110-1 01011
0101-01-0100101000010111--0011-0011011110-111100-0 00100
000-1--100-00-1001-10-000000100-001100-10101010001 10000
10001001-0001011-1-1-0-00101110-10100---0010001--- 10111
01011000000100100000---1--11-0001011111101-01-1011 01111
1--01--00100110001-110-0-00001011---01001000110--- 10010
0-0001--01--11101010100000000010011001000-01100001 00011
0-0100110-00111100-001--11--00-1001-00-0-11-1-0-1- 00100
101-1-100-001001-010111-01--010-1-1011-01101001001 11000
0110-111011--1-010101-011-1-00100110-00-1111000-11 11001
011001011---010011-10-00-11-001000000101101101-0-1 00100
1001111-1-1111-1001-000111010-100--0111110011000-1 10111
1-1010-1-100111110010-101011-1001000111-0000--11-1 11000
-00110001000010000010100010010-0-0-100-1-0111011-1 00101
1110-01100111111-1-1-110-0-110--011--01-11-0000-01 00000
-01010101010-1-1-00-1111010100-1001111110110--0-00 11011
110-10000001--0-0-01001111-0011-0110110100010--111 11111
101-10111000011110000-1001-001-01111-011-0001-0100 00100
.e

After running the input file through the espresso script, it minimizes the function to 26 implicants with significantly
fewer literals.

$ espresso extension/espresso/test/bb_all/bb_50x5x50_20%_0.pla
.i 50
.o 5
.ilb x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 x38 x39 x40 x41 x42 x43 x44 x45 x46 x47 x48 x49
.ob y0 y1 y2 y3 y4
.p 26
----------------------0-----1---0------0---------- 01110
------0-----------------------------1-----1--0--0- 11100
---------------------------1--------1---0------0-- 01011
-------------------------------------11-1--------1 10000
0-------------------------1---------1-1----------- 00110
--------0--------1----------0-------0------------- 00010
-------------0---------0-0-0--------------------1- 10001
--------------0-00------------------0-------1----- 00101
--------------------------0-0---0---------0------- 00011
-----------0----0-------------------------0---0--- 10000
-------------------------1---0---1---------------1 10000
-----------01-----------------------------0---1--1 11000
-------------00------------------------11--------- 11000
----------------------------0-1---------0-0---1--- 11110
--------------------------1----1--0------------1-- 00100
-----1-----------------------------1-1---1-------- 00111
------1---------------0-------1--1---0------------ 11001
------0----0------------------------------1-1-0--- 01000
-1---1--------1----------------------------------0 00001
-----------------1----------------------0-----0-1- 01010
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--------------------0--------1---------1------0--- 00100
---------------------------11-------------1-0-1--- 10010
--------------------------1-----0----10----------- 00100
------0------0---------0---------0-----------0---- 00101
-------0----------0---1--1--0---0----------------- 11011
--------------------0-----------0-----------1-0--- 00100
.e

1.7.4 References

1.8 Using PyEDA to Solve Sudoku

According to Peter Norvig in his fantastic essay on solving every Sudoku puzzle using Python, security expert Ben
Laurie once stated that “Sudoku is a denial of service attack on human intellect”. I can personally attest to that.

In this example, I will explain how to use PyEDA’s Boolean expressions and satisfiability engine to create a general-
purpose Sudoku solver.

First, let’s get a few ground rules straight:

1. There are lots of Sudoku solvers on the Internet; I make no claims of novelty.

2. PyEDA is pretty fast, but unlikely to win any speed competitions.

3. Let’s face it–this is a pretty awesome waste of time.

1.8.1 Getting Started

First, import all the standard symbols from PyEDA.

>>> from pyeda.inter import *

Let’s also define a variable “DIGITS” that makes it easier to access the Sudoku square values.

>>> DIGITS = "123456789"

1.8.2 Setting Up the Puzzle Grid

A Sudoko puzzle is a 9x9 grid. Each square in the grid may contain any number in the digits 1-9. The following
example grid was generated by Web Sudoku.

To represent the state of the grid coordinate, create a 3-dimensional variable, X.

>>> X = exprvars(’x’, (1, 10), (1, 10), (1, 10))

exprvars is a versatile function for returning arrays of arbitrary dimension. The first argument is the variable name.
Each additional argument adds an additional dimension with a non-negative start and stop index. If you provide only
a number instead of a two-tuple, the start index is zero. For example, we could also have used exprvars(’x’, 9,
9, 9), but that would have given X[0:9, 0:9, 0:9] instead of X[1:10, 1:10, 1:10].

The variable X is a 9x9x9 bit vector, indexed as X[row, column, value]. So for the Example Sudoku Grid,
since row 5, column 3 has value ‘8’, we would represent this by setting X[5,3,8] = 1.
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Figure 1.6: Example Sudoku Grid

1.8.3 Constraints

Now that we have a variable X[r,c,v] to represent the state of the Sudoku board, we need to program the constraints.
We will use the familiar Boolean And function, and the OneHot function. In case you are not familiar with the
OneHot function, we will describe it here.

One Hot Function

Let’s say I have three variables, a, b, and c.

>>> a, b, c = map(exprvar, ’abc’)

I want to write a Boolean formula that guarantees that only one of them is true at any given moment.

>>> f = OneHot(a, b, c)

You can use PyEDA to automatically produce the truth table.

>>> expr2truthtable(f)
inputs: c b a
000 0
001 1
010 1
011 0
100 1
101 0
110 0
111 0
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By default, the OneHot function returns a formula in conjunctive normal (product-of-sums) form. Roughly translated,
this formula says that “no two variables can both be true, and at least one must be true”.

>>> f
And(Or(~a, ~b), Or(~a, ~c), Or(~b, ~c), Or(a, b, c))

In disjunctive normal (sum-of-products) form, the function looks like this:

>>> f.to_dnf()
Or(And(~a, ~b, c), And(~a, b, ~c), And(a, ~b, ~c))

Value Constraints

You probably already noticed that if the square at (5, 3) has value ‘8’, it is not allowed to have any other value. That
is, if X[5,3,8] = 1, then X[5,3,1:10] == [0, 0, 0, 0, 0, 0, 0, 1, 0].

We need to write a constraint formula that says “every square on the board can assume only one value.” With PyEDA,
you can write this formula as follows:

>>> V = And(*[
... And(*[
... OneHot(*[ X[r, c, v]
... for v in range(1, 10) ])
... for c in range(1, 10) ])
... for r in range(1, 10) ])

Row and Column Constraints

Next, we need to write formulas that say “every square in each row is unique”, and “every square in each column is
unique”, respectively.

>>> R = And(*[
... And(*[
... OneHot(*[ X[r, c, v]
... for c in range(1, 10) ])
... for v in range(1, 10) ])
... for r in range(1, 10) ])

>>> C = And(*[
... And(*[
... OneHot(*[ X[r, c, v]
... for r in range(1, 10) ])
... for v in range(1, 10) ])
... for c in range(1, 10) ])

Box Constraints

The box constraints are a little tricker. We need a formula that says “every square in a box is unique”. The key to
understanding how to write this formula is to think of the grid as consisting of 3x3 boxes. Now instead of iterating
over the nine squares in a row or column, we will iterate over the 3 rows and 3 columns of the 3x3 boxes.

>>> B = And(*[
... And(*[
... OneHot(*[ X[3*br+r, 3*bc+c, v]
... for r in range(1, 4) for c in range(1, 4) ])
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... for v in range(1, 10) ])

... for br in range(3) for bc in range(3) ])

Putting It All Together

Now that we have the value, row, column, and box constraints, we need to combine them all into a single formula. We
will use the And function to join the constraints, because all constraints must be true for the puzzle to be solved.

>>> S = And(V, R, C, B)
>>> len(S.args)
10530

As you can see, the constraints formula is quite large.

1.8.4 Preparing the Input

We now have the generic constraints for the rules of Sudoku, but when you sit down to solve a puzzle, you are always
given a set of known values. These are the inputs, and they will further constrain the solution.

Here is a function to parse an input string, and produce the input constraints. Any character in the set 1-9 will be taken
as an assignment, the values ‘0’ and ‘.’ (period) will be taken as an unknown, and all other characters will be ignored.
This function also returns a CNF data type.

>>> def parse_grid(grid):
... chars = [c for c in grid if c in DIGITS or c in "0."]
... assert len(chars) == 9 ** 2
... return And(*[ X[i // 9 + 1, i % 9 + 1, int(c)]
... for i, c in enumerate(chars) if c in DIGITS ])

The example grid above can be written like this:

>>> grid = ( ".73|...|8.."
... "..4|13.|.5."
... ".85|..6|31."
... "---+---+---"
... "5..|.9.|.3."
... "..8|.1.|5.."
... ".1.|.6.|..7"
... "---+---+---"
... ".51|6..|28."
... ".4.|.52|9.."
... "..2|...|64." )

1.8.5 Display Methods

To display the solution, we will need some methods. The PyEDA SAT solver returns a dictionary that represents a
“point” in an N-dimensional Boolean space. That is, it maps N Boolean variables (in our case 729) onto their values
in {0, 1}.

>>> def get_val(point, r, c):
... for v in range(1, 10):
... if point[X[r, c, v]]:
... return DIGITS[v-1]
... return "X"
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>>> def display(point):
... chars = list()
... for r in range(1, 10):
... for c in range(1, 10):
... if c in (4, 7):
... chars.append("|")
... chars.append(get_val(point, r, c))
... if r != 9:
... chars.append("\n")
... if r in (3, 6):
... chars.append("---+---+---\n")
... print("".join(chars))

1.8.6 Finding the Solution

Without further ado, let’s use the PicoSAT fast SAT solver to crunch the numbers.

>>> def solve(grid):
... with parse_grid(grid):
... return S.satisfy_one()

Here is the solution to the Example Sudoku Grid:

>>> display(solve(grid))
173|529|864
694|138|752
285|476|319
---+---+---
567|294|138
428|713|596
319|865|427
---+---+---
951|647|283
846|352|971
732|981|645

That example was actually a pretty easy puzzle. Let’s see how the Sudoku solver handles a few harder puzzles.

>>> grid = ( "6..|3.2|..."
... ".5.|...|.1."
... "...|...|..."
... "---+---+---"
... "7.2|6..|..."
... "...|...|.54"
... "3..|...|..."
... "---+---+---"
... ".8.|15.|..."
... "...|.4.|2.."
... "...|...|7.." )

>>> display(solve(grid))
614|382|579
953|764|812
827|591|436
---+---+---
742|635|198
168|279|354

58 Chapter 1. Contents

http://fmv.jku.at/picosat


Python EDA Documentation, Release 0.24.0

395|418|627
---+---+---
286|157|943
579|843|261
431|926|785

>>> grid = ( "38.|6..|..."
... "..9|...|..."
... ".2.|.3.|51."
... "---+---+---"
... "...|..5|..."
... ".3.|.1.|.6."
... "...|4..|..."
... "---+---+---"
... ".17|.5.|.8."
... "...|...|9.."
... "...|..7|.32" )

>>> display(solve(grid))
385|621|497
179|584|326
426|739|518
---+---+---
762|395|841
534|812|769
891|476|253
---+---+---
917|253|684
243|168|975
658|947|132

1.9 All Solutions To The Eight Queens Puzzle

The eight queens puzzle is the problem of placing eight chess queens on an 8x8 chessboard so that no two queens
attack each other. It is a classic demonstration of finding the solutions to a constraint problem.

In this essay we will use the PyEDA SAT solver to find all solutions to the eight queens puzzle.

1.9.1 Getting Started

First, import all the standard symbols from PyEDA.

>>> from pyeda.inter import *

1.9.2 Setting Up the Chess Board

A chess board is an 8x8 grid. Each square on the grid either has a queen on it, or doesn’t. Therefore, we can represent
the board using a two-dimensional bit vector, X.

>>> X = exprvars(’x’, 8, 8)
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1.9.3 Constraints

Row and Column Constraints

Rather than start with the constraint that
∑︀

𝑋𝑖,𝑗 = 8, we will instead start with a simplifying observation. In order to
place eight queens on the board, since there are exactly eight rows and eight columns on the board itself, it is obvious
that exactly one queen must be placed on each row, and each column.

First, we write a constraint that says “exactly one queen must be placed on each row”.

>>> R = And(*[OneHot(*[X[r,c] for c in range(8)]) for r in range(8)])

Next, we write a constraint that says “exactly one queen must be placed on each column”.

>>> C = And(*[OneHot(*[X[r,c] for r in range(8)]) for c in range(8)])

Diagonal Constraints

Diagonal constraints are easy to visualize, but slightly trickier to specify mathematically. We will break down the
diagonal constraints into two separate sets:

• left-to-right

• right-to-left

In both cases, the diagonal is always oriented “bottom-to-top”.

In both cases, we need to write a constraint that says “at most one queen can be located on each diagonal”.

>>> starts = [(i, 0) for i in range(8-2, 0, -1)] + [(0, i) for i in range(8-1)]
>>> lrdiags = []
>>> for r, c in starts:
... lrdiags.append([])
... ri, ci = r, c
... while ri < 8 and ci < 8:
... lrdiags[-1].append((ri, ci))
... ri += 1
... ci += 1
...
>>> DLR = And(*[OneHot0(*[X[r,c] for r, c in diag]) for diag in lrdiags])

>>> starts = [(i, 8-1) for i in range(8-2, -1, -1)] + [(0, i) for i in range(8-2, 0, -1)]
>>> rldiags = []
>>> for r, c in starts:
... rldiags.append([])
... ri, ci = r, c
... while ri < 8 and ci >= 0:
... rldiags[-1].append((ri, ci))
... ri += 1
... ci -= 1
...
>>> DRL = And(*[OneHot0(*[X[r,c] for r, c in diag]) for diag in rldiags])

Putting It All Together

Now that we have constraints for rows, columns, and diagonals, we have successfully defined all rules for solving the
puzzle. Put them all together using the And function, because all constraints must simultaneously be valid.
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>>> S = R & C & DLR & DRL

Verify the formula is in CNF form, and show how large it is:

>>> S.is_cnf()
True
>>> len(S.args)
744

1.9.4 Display Method

For convenience, let’s define a function display to conveniently convert a solution point to ASCII:

>>> def display(point):
... chars = list()
... for r in range(8):
... for c in range(8):
... if point[X[r,c]]:
... chars.append("Q")
... else:
... chars.append(".")
... if r != 7:
... chars.append("\n")
... print("".join(chars))

1.9.5 Find a Single Solution

Find a single solution to the puzzle using the satisfy_one method:

>>> display(S.satisfy_one())

.......Q

...Q....
Q.......
..Q.....
.....Q..
.Q......
......Q.
....Q...

1.9.6 Find All Solutions

Part of the challenge of the eight queens puzzle is to not just find a single solution, but find all solutions. Use the
satisfy_all method to iterate through all solutions:

>>> for i, soln in enumerate(S.satisfy_all()):
... print("Solution", i+1, end="\n\n")
... display(soln)
... print("")

Solution 1

.......Q

...Q....
Q.......
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..Q.....

.....Q..

.Q......

......Q.

....Q...

...

It is easy to verify that there are exactly 92 distinct solutions to the puzzle:

>>> S.satisfy_count()
92
>>> len(list(S.satisfy_all()))
92

1.10 Release Notes

1.10.1 Version 0.24

Variables names are now required to be C-style identifiers. I.e., [a-zA-Z_][a-zA-Z0-9_]*.

The expression parser now handles both a[1][2][3] and a[1,2,3] syntaxes (Issue 91). The a[1][2][3] is
deprecated.

Got rid of expression is_neg_unate, is_pos_unate, and is_binate functions. I haven’t been able to find
an efficient algorithm for this, so just convert expressions and BDDs to truth tables first. If your function is too big to
fit in a truth table, it’s probably also too big to expand to a canonical expression.

Not(Not(...)) double negation is now automatically reduced, just like Not(Nand(...)), etc.

Cleaned up the definition of expression depth (Issue 92). This is not backwards compatible.

Fixed Issue 93, picosat script fails with trivial zero input:

$ picosat
p cnf 0 1
0

Changed RegexLexer to yield EndToken at the end of a token stream. This makes parsing nicer, avoiding catching
StopIteration everywhere.

Got rid of factor=False on expression factory functions. This was overly designed UI.

The expression restrict method is a little faster now. Especially for big functions.

Added lots of new reference documentation.

Added new farray documentation chapter. Fixed several little issues with function arrays during this process. The
constructor now takes an ftype=None parameter. Negative indices make more sense now. Slices behave more like
Python tuple slices. Fixed several inconsistencies with empty arrays.

Deprecated bitvec function.

1.10.2 Version 0.23

This version introduces a new picosat script. Now you can solve DIMACS CNF files from the command-line. See
http://pyeda.readthedocs.org/en/latest/expr.html#picosat-script for details.
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Finally there is a proper documentation chapter for binary decision diagrams! While writing this documentation, I
noticed, and fixed some obscure bugs related to incorrect usage of weak references to BDD nodes.

Made some minor changes to the public interface of the bdd module.

Replaced the traverse method with three options for BDD iteration:

• bdd.dfs_preorder - Depth-first search pre-order traversal

• bdd.dfs_postorder - Depth-first search post-order traversal

• bdd.bfs() - Breadth-first search

Got rid of the deprecated uint2bv and int2bv functions. Use the uint2exprs, int2exprs functions instead.

Changed the pyeda.parsing.parse_pla function so it takes a string input. This makes it much easier to test.

Deprecated the is_neg_unate, is_pos_unate, is_binatemethods for expressions. I haven’t found a correct
algorithm that is better than just 1) converting to a truth table, and 2) checking for monotonicity in the cofactors.

As of this release, I will be dropping support for Python 3.2.

1.10.3 Version 0.22

A couple features, and some good bug-fixes in this release.

Fixed Issue 80. Apparently, I forgot to implement the right-side version of XOR operator: 0 ^ x.

Fixed Issue 81. I continue finding bugs with degenerate forms. This particular one comes up when you try to do
something similar to Or(Or(a, b)). The __new__ method was implemented incorrectly, so I moved the Or(a)
= a (and similar) rules to the simplify method.

To match the notation used by Univ of Illinois VLSI class, I changed BDD low/high nodes to “lo”, and “hi”.

Got rid of the “minus” operator, a - b. This was previously implemented as a | ~b, but I don’t think it has merit
anymore.

The farray type now uses the + operator for concatenation, and * for repetition. These are very important features
in SystemVerilog. See Issue 77 for details.

Implemented the farray.__setitem__ method. It is very useful to instantiate an farray using exprzeros,
and then programmatically assign indices one-by-one. See Issue 78 for details.

To demonstrate some of the fancy, new farray features, I added the AES algorithm to the logic package. It
manages to complete all the logic assignments, but I haven’t been able to test its correctness yet, because it explodes
the memory on my machine. At a bare minimum, it will be a nice test case for performance optimizations necessary
to handle large designs.

1.10.4 Version 0.21

Important bug fix! Issue 75. Harnesser pointed out that Espresso was returning some goofy results for degenerate
inputs (a literal or AND(lit, lit, ...)).

The major new feature in this release is the farray mult-dimensional array (MDA) data type. The implementation
of BitVector was a kludge – it was built around the Expression function type, and didn’t support all the fancy
things you could do with numpy slices. All usage of the old Slicer and BitVector types has been eliminated,
and replaced by farray. This includes the bitvec, uint2bv, and int2bv functions, and the contents of the
pyeda.logic package (addition, Sudoku, etc).

Both uint2bv and int2bv are deprecated, superceded by uint2exprs and int2exprs (or uint2bdds, etc).
So far I haven’t deprecated bitvec, because it’s a very commonly-used function.
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See Issue 68 for some details on the farray type. My favorite part is the ability to multiplex an farray using
Python’s slice syntax:

>>> xs = exprvars(’x’, 4)
>>> sel = exprvars(’s’, 2)
>>> xs[sel]
Or(And(~s[0], ~s[1], x[0]), And(s[0], ~s[1], x[1]), And(~s[0], s[1], x[2]), And(s[0], s[1], x[3]))

This even works with MDAs:

>>> xs = exprvars(’x’, 4, 4)
>>> sel = exprvars(’s’, 2)
>>> xs[0,sel]
Or(And(~s[0], ~s[1], x[0][0]), And(s[0], ~s[1], x[0][1]), And(~s[0], s[1], x[0][2]), And(s[0], s[1], x[0][3]))

Added AchillesHeel function to expression parsing engine.

Eliminated the + and * operators for Boolean OR, AND, respectively. This is annoying, but I need these operators for
Issue 77. Sorry for any trouble, but that’s what major version zero is for :).

1.10.5 Version 0.20

Probably the most useful feature in this release is the espresso script:

$ espresso -h
usage: espresso [-h] [-e {fast,ness,nirr,nunwrap,onset,strong}] [--fast]

[--no-ess] [--no-irr] [--no-unwrap] [--onset] [--strong]
[file]

Minimize a PLA file

positional arguments:
file PLA file (default: stdin)

optional arguments:
...

This script implements a subset of the functionality of the original Espresso command-line program. It uses the
new parse_pla function in the pyeda.parsing.pla module to parse common PLA files. Note that the script
only intends to implement basic truth-table functionality at the moment. It doesn’t support multiple-valued variables,
and various other Espresso built-in features.

Added Espresso get_config and set_config functions, to manipulate global configuration

New Bitvector methods:

• unor - unary nor

• unand - unary nand

• uxnor - unary xnor

Made BitVector an immutable type. As a result, dropped item assignment X[0] = a, zero extension
X.zext(4), sign extension X.sext(4), and append method.

The BitVector type now supports more overloaded operators:

• X + Y concatenate two bit vectors

• X << n return the bit vector left-shifted by n places

• X >> n return the bit vector right-shifted by n places
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Both left shift and right shift are simple shifts–they use the default “carry-in” of zero.

Got rid of boolify utility function. It had been replaced over time by more sophisticated techniques.

There is a new Mux factory function, for multiplexing arbitrarily many input functions.

Update to PicoSAT 959. Check the homepage for details, but it looks like the only changes were related to header file
documentation.

Added a neat capability to specify assumptions for SAT-solving using a with statement. It supports both literal and
product-term forms:

>>> f = Xor(a, b, c)
>>> with a, ~b:
... print(f.satisfy_one())
{a: 1, b: 0, c: 0}
>>> with a & ~b:
... print(f.satisfy_one())
{a: 1, b: 0, c: 0}

At the moment, this only works for the satisfy_one method, because it is so handy and intuitive.

1.10.6 Version 0.19

Release 0.19.3

Enhanced error handling in the Espresso C extension.

Release 0.19.2

Added the espresso_tts function, which allows you to run Espresso on one or more TruthTable instances.

Release 0.19.1

Fixed a bone-headed mistake: leaving espresso.h out of the source distribution. One of these days I will remember
to test the source distribution for all the necessary files before releasing it.

Release 0.19.0

This is a very exciting release! After much hard work, PyEDA now has a C extension to the famous Espresso logic
minimization software from Berkeley! See the new chapter on two-level logic minimization for usage information.

Also, after some feedback from users, it became increasingly obvious that using the -+* operators for NOT, OR, AND
was a limitation. Now, just like Sympy, PyEDA uses the ~|&^ operators for symbolic algebra. For convenience, the
legacy operators will issue deprecation warnings for now. In some upcoming release, they will no longer work.

After other feedback from users, I changed the way Expression string representation works. Now, the __str__
method uses Or, And, etc, instead of ascii characters. The idea is that the string representation now returns valid
Python that can be parsed by the expr function (or the Python interpreter). To provide support for fancy formatting in
IPython notebook, I added the new to_unicode and to_latex methods. These methods also return fancy string
representations.

For consistency, the uint2vec and int2vec functions have been renamed to uint2bv and int2bv, respectively.

Since is_pos_unate, is_neg_unate, and is_binate didn’t seem like fundamental operations, I remove them
from the Function base class.
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1.10.7 Version 0.18

Release 0.18.1

Three minor tweaks in this release:

• expr/bdd to_dot methods now return undirected graphs.

• Added AchillesHeel factory function to expr.

• Fixed a few obscure bugs with simplification of Implies and ITE.

Release 0.18.0

New stuff in this release:

• Unified the Expression and Normalform expression types, getting rid of the need for the nfexprmodule.

• Added to_dot methods to both Expression and BinaryDecisionDiagram data types.

Mostly incremental changes this time around. My apologies to anybody who was using the nfexpr module. Lately,
Expression has gotten quite fast, especially with the addition of the PicoSAT C extension. The normal form data
type as set(frozenset(int)) was not a proper implementation of the Function class, so finally did away
with it in favor of the new “encoded” representation that matches the Dimacs CNF convention of mapping an index
1..N to each variable, and having the negative index correspond to the complement. So far this is only useful for CNF
SAT-solving, but may also come in handy for any future, fast operations on 2-level covers.

Also, somewhat awesome is the addition of the to_dot methods. I was playing around with IPython extensions,
and eventually hacked up a neat solution for drawing BDDs into the notebook. The magic functions are published
in my ipython-magic repo. See the usage notes. Using subprocess is probably not the best way to interface with
Graphviz, but it works well enough without any dependencies.

1.10.8 Version 0.17

Release 0.17.1

Got rid of the assumptions parameter from boolalg.picosat.satisfy_all function, because it had no
effect. Read through picosat.h to figure out what happened, and you need to re-apply assumptions for every call
to picosat_sat. For now, the usage model seems a little dubious, so just got rid of it.

Release 0.17.0

New stuff in this release:

• Added assumptions=None parameter to PicoSAT satisfy_one and satisfy_all functions. This
produces a very nice speedup in some situations.

• Got rid of extraneous picosat.py Python wrapper module. Now the PicoSAT Python interface is imple-
mented by picosatmodule.c.

• Updated Nor/Nand operators to secondary status. That is, they now can be natively represented by symbolic
expressions.

• Added a Brent-Kung adder to logic.addition module

• Lots of other miscellaneous cleanup and better error handling
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1.10.9 Version 0.16

Release 0.16.3

Fixed bug: absorption algorithm not returning a fully simplified expression.

Release 0.16.2

Significantly enhance the performance of the absorption algorithm

Release 0.16.1

Fixed bug: PicoSAT module compilation busted on Windows

Release 0.16.0

New stuff in this release:

• Added Expression complete_sum method, to generate a normal form expression that contains all prime
implicants.

• Unicode expression symbols, because it’s awesome

• Added new Expression ForEach, Exists factory functions.

• Changed frozenset implementation of OrAnd and EqualBase arguments back to tuple. The simplifi-
cation aspects had an unfortunate performance penalty. Use absorb to get rid of duplicate terms in DNF/CNF
forms.

• Added flatten=False/True to Expression to_dnf, to_cdnf, to_cnf, to_ccnf methods. Often, flatten=False is faster
at reducing to a normal form.

• Simplified absorb algorithm using Python sets.

• Expression added a new splitvar property, which implements a common heuristic to find a good splitting vari-
able.

1.10.10 Version 0.15

Release 0.15.1

• Thanks to Christoph Gohlke, added build support for Windows platforms.

Release 0.15.0

This is probably the most exciting release of PyEDA yet! Integration of the popular PicoSAT fast C SAT solver makes
PyEDA suitable for industrial-strength applications. Unfortunately, I have no idea how to make this work on Windows
yet.

Here are the full release notes:

• Drop support for Python 2.7. Will only support Python 3.2+ going forward.

• Integrate PicoSAT, a compact SAT solver written in C.
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• Added lots of new capabilities to Boolean expression parsing:

– s ? d1 : d0 (ITE), p => q (Implies), and p <=> q (Equal) symbolic operators.

– Full complement of explicit form Boolean operators: Or, And, Xor, Xnor, Equal, Unequal, Nor,
Nand, OneHot0, OneHot, Majority, ITE, Implies, Not

– The expr function now simplifies by default, and has simplify=True, and factor=False param-
eters.

• New Unequal expression operator.

• New Majority high-order expression operator.

• OneHot0, OneHot, and Majority all have both disjunctive (conj=False) and conjunctive (conj=True)
forms.

• Add new Expression.to_ast method. This might replace the expr2dimacssat function in the future,

• Fixed bug: Xor.factor(conj=True) returns non-equivalent expression.

• Changed the meaning of conj parameter in Expression.factor method. Now it is only used by the
top-level, and not passed recursively.

• Normal form expression no longer inherit from Function. They didn’t implement the full interface, so this
just made sense.

• Replaced pyeda.expr.expr2dimacscnf with a new pyeda.expr.DimacsCNF class. This might be
unified with normal form expressions in the future.

1.10.11 Version 0.14

Release 0.14.2

Fixed Issue #42.

There was a bug in the implementation of OrAnd, due to the new usage of a frozenset to represent the argument
container.

With 0.14.1, you could get this:

>>> And(’a’, ’b’, ’c’) == Or(’a’, ’b’, ’c’)
True

Now:

>>> And(’a’, ’b’, ’c’) == Or(’a’, ’b’, ’c’)
False

The == operator is only used by PyEDA for hashing, and is not overloaded by Expression. Therefore, this could
potentially cause some serious issues with Or/And expressions that prune arguments incorrectly.

Release 0.14.1

Fixed Issue #41. Basically, the package metadata in the 0.14.0 release was incomplete, so the source distribution
only contained a few modules. Whoops.

68 Chapter 1. Contents

https://github.com/cjdrake/pyeda/issues/42
https://github.com/cjdrake/pyeda/issues/41


Python EDA Documentation, Release 0.24.0

Release 0.14.0

This release reorganizes the PyEDA source code around quite a bit, and introduces some awesome new parsing utilities.

Probably the most important new feature is the addition of the pyeda.boolalg.expr.expr function. This
function takes int or str as an input. If the input is a str instance, the function parses the input string, and returns
an Expression instance. This makes it easy to form symbolic expression without even having to declare variables
ahead of time:

>>> from pyeda.boolalg.expr import expr
>>> f = expr("-a * b + -b * c")
>>> g = expr("(-x[0] + x[1]) * (-x[1] + x[2])")

The return value of expr function is not simplified by default. This allows you to represent arbitrary expressions, for
example:

>>> h = expr("a * 0")
>>> h
0 * a
>>> h.simplify()
0

• Reorganized source code:

– Moved all Boolean algebra (functions, vector functions) into a new package, pyeda.boolalg.

– Split arithmetic into addition and gray_code modules.

– Moved all logic functions (addition, gray code) into a new package, pyeda.logic.

– Created new Sudoku module under pyeda.logic.

• Awesome new regex-based lexical analysis class, pyeda.parsing.RegexLexer.

• Reorganized the DIMACS parsing code:

– Refactored parsing code to use RegexLexer.

– Parsing functions now return an abstract syntax tree, to be used by pyeda.boolalg.ast2expr func-
tion.

– Changed dimacs.load_cnf to pyeda.parsing.dimacs.parse_cnf.

– Changed dimacs.load_sat to pyeda.parsing.dimacs.parse_sat.

– Changed dimacs.dump_cnf to pyeda.boolalg.expr2dimacscnf.

– Changed dimacs.dump_sat to pyeda.boolalg.expr2dimacssat.

• Changed constructors for Variable factories. Unified namespace as just a part of the name.

• Changed interactive usage. Originally was from pyeda import *. Now use from pyeda.inter
import *.

• Some more miscellaneous refactoring on logic expressions:

– Fixed weirdness with Expression.simplified implementation.

– Added new private class _ArgumentContainer, which is now the parent of ExprOrAnd,
ExprExclusive, ExprEqual, ExprImplies, ExprITE.

– Changed ExprOrAnd argument container to a frozenset, which has several nice properties for sim-
plification of AND/OR expressions.

• Got rid of pyeda.alphas module.
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• Preliminary support for logic expression complete_sum method, for generating the set of prime implicants.

• Use a “computed table” cache in BDD restrict method.

• Use weak references to help with BDD garbage collection.

• Replace distutils with setuptools.

• Preliminary support for Tseitin encoding of logic expressions.

• Rename pyeda.common to pyeda.util.

1.10.12 Version 0.13

Wow, this release took a huge leap from version 0.12. We’re probably not ready to declare a “1.0”, but it is definitely
time to take a step back from API development, and start focusing on producing useful documentation.

This is not a complete list of changes, but here are the highlights.

• Binary Decision Diagrams! The recursive algorithms used to implement this datatype are awesome.

• Unification of all Variable subclasses by using separate factory functions (exprvar, ttvar, bddvar), but a
common integer “uniqid”.

• New “untyped point” is an immutable 2-tuple of variable uniqids assigned to zero and one. Also a new
urestrict method to go along with it. Most important algorithms now use untyped points internally, be-
cause the set operations are very elegant and avoid dealing with which type of variable you are using.

• Changed the Variable’s namespace argument to a tuple of strings.

• Restricting a function to a 0/1 state no longer returns an integer. Now every function representation has its own
zero/one representations.

• Now using the fantastic Logilab PyLint program!

• Truth tables now use the awesome stdlib array.array for internal representation.

• Changed the names of almost all Expression sublasses to ExprSomething. the Or/And/Not operators are now
functions. This simplified lots of crummy __new__ magic.

• Expression instances to not automatically simplify, but they do if you use Or/And/Not/etc with default
**kwargs.

• Got rid of constant and binop modules, of dubious value.

• Added is_zero, is_one, box, and unbox to Function interface.

• Removed reduce, iter_zeros, and iter_ones from Function interface.

• Lots of refactoring of SAT methodology.

• Finally implemented unate methods correctly for Expressions.

1.10.13 Version 0.12

• Lots of work in pyeda.table:

– Now two classes, TruthTable, and PCTable (for positional-cube format, which allows X outputs).

– Implemented most of the boolfunc.Function API.

– Tables now support -, +, *, and xor operators.

• Using a set container for And/Or/Xor argument simplification results in about 30% speedup of unit tests.
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• Renamed boolfunc.iter_space to boolfunc.iter_points.

• New boolfunc.iter_terms generator.

• Changed dnf=True to conf=False on several methods that give the option of returnin an expression in
conjunctive or disjunctive form.

• Added conj=False argument to all expression factor methods.

• New Function.iter_domain and Function.iter_image iterators.

• Renamed Function.iter_outputs to Function.iter_relation.

• Add pyeda.alphas module for a convenience way to grab all the a, b, c, d, ... variables.

• Xor.factor now returns a flattened form, instead of nested.

1.10.14 Version 0.11

Release 0.11.1

• Fixed bug #16: Function.reduce only implemented by Variable

Release 0.11.0

• In pyeda.dimacs changed parse_cnf method name to load_cnf

• In pyeda.dimacs changed parse_sat method name to load_sat

• In pyeda.dimacs added new method dump_cnf, to convert expressions to CNF-formatted strings.

• In pyeda.dimacs added new method dump_sat, to convert expressions to SAT-formatted strings.

• Variables now have a qualname attribute, to allow referencing a variable either by its local name or its fully-
qualified name.

• Function gained a reduce method, to provide a standard interface to reduce Boolean function implementations
to their canonical forms.

• Expressions gained a simplify parameter, to allow constructing unsimplified expressions.

• Expressions gained an expand method, to implement Shannon expansion.

• New if-then-else (ITE) expression type.

• NormalForm expressions now both support -, +, and * operators.

1.11 Reference

1.11.1 pyeda.util — Utilities

The pyeda.util module contains top-level utilities, such as fundamental functions and decorators.

Interface Functions:

• bit_on()

• clog2()

• parity()
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Decorators:

• cached_property()

Interface Functions

pyeda.util.bit_on(num: int, bit: int)→ int
Return the value of a number’s bit position.

For example, since 42 = 21 + 23 + 25, this function will return 1 in bit positions 1, 3, 5:

>>> [bit_on(42, i) for i in range(clog2(42))]
[0, 1, 0, 1, 0, 1]

pyeda.util.clog2(num: int)→ int
Return the ceiling log base two of an integer ≥ 1.

This function tells you the minimum dimension of a Boolean space with at least N points.

For example, here are the values of clog2(N) for 1 ≤ 𝑁 < 18:

>>> [clog2(n) for n in range(1, 18)]
[0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5]

This function is undefined for non-positive integers:

>>> clog2(0)
Traceback (most recent call last):

...
ValueError: expected num >= 1

pyeda.util.parity(num: int)→ int
Return the parity of a non-negative integer.

For example, here are the parities of the first ten integers:

>>> [parity(n) for n in range(10)]
[0, 1, 1, 0, 1, 0, 0, 1, 1, 0]

This function is undefined for negative integers:

>>> parity(-1)
Traceback (most recent call last):

...
ValueError: expected num >= 0

Decorators

pyeda.util.cached_property(func)
Return a cached property calculated by the input function.

Unlike the property decorator builtin, this decorator will cache the return value in order to avoid repeated
calculations. This is particularly useful when the property involves some non-trivial computation.

For example, consider a class that models a right triangle. The hypotenuse c will only be calculated once.

import math

class RightTriangle
def __init__(self, a, b):
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self.a = a
self.b = b

@cached_property
def c(self):

return math.sqrt(self.a**2 + self.b**2)

1.11.2 pyeda.boolalg.boolfunc — Boolean Functions

The pyeda.boolalg.boolfuncmodule implements the fundamentals of Boolean space, variables and functions.

Interface Functions:

• num2point()

• num2upoint()

• num2term()

• point2upoint()

• point2term()

• iter_points()

• iter_upoints()

• iter_terms()

• vpoint2point()

Interface Classes:

• Variable

• Function

Interface Functions

pyeda.boolalg.boolfunc.num2point(num, vs)
Convert num into a point in an N-dimensional Boolean space.

The vs argument is a sequence of 𝑁 Boolean variables. There are 2𝑁 points in the corresponding Boolean space.
The dimension number of each variable is its index in the sequence.

The num argument is an int in range [0, 2𝑁 ).

For example, consider the 3-dimensional space formed by variables 𝑎, 𝑏, 𝑐. Each vertex corresponds to a 3-
dimensional point as summarized by the table:

6-----------7 ===== ======= =================
/| /| num a b c point

/ | / | ===== ======= =================
/ | / | 0 0 0 0 {a:0, b:0, c:0}

4-----------5 | 1 1 0 0 {a:1, b:0, c:0}
| | | | 2 0 1 0 {a:0, b:1, c:0}
| | | | 3 1 1 0 {a:1, b:1, c:0}
| 2-------|---3 4 0 0 1 {a:0, b:0, c:1}
| / | / 5 1 0 1 {a:1, b:0, c:1}

c b | / | / 6 0 1 1 {a:0, b:1, c:1}
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|/ |/ |/ 7 1 1 1 {a:1, b:1, c:1}
+-a 0-----------1 ===== ======= =================

Note: The a b c column is the binary representation of num written in little-endian order.

pyeda.boolalg.boolfunc.num2upoint(num, vs)
Convert num into an untyped point in an N-dimensional space.

The vs argument is a sequence of 𝑁 Boolean variables. There are 2𝑁 points in the corresponding Boolean space.
The dimension number of each variable is its index in the sequence.

The num argument is an int in range [0, 2𝑁 ).

See num2point() for a description of how num maps onto an N-dimensional point. This function merely
converts the output to an immutable (untyped) form.

pyeda.boolalg.boolfunc.num2term(num, fs, conj=False)
Convert num into a min/max term in an N-dimensional space.

The fs argument is a sequence of 𝑁 Boolean functions. There are 2𝑁 points in the corresponding Boolean space.
The dimension number of each function is its index in the sequence.

The num argument is an int in range [0, 2𝑁 ).

If conj is False, return a minterm. Otherwise, return a maxterm.

For example, consider the 3-dimensional space formed by functions 𝑓 , 𝑔, ℎ. Each vertex corresponds to a
min/max term as summarized by the table:

6-----------7 ===== ======= ========== ==========
/| /| num f g h minterm maxterm

/ | / | ===== ======= ========== ==========
/ | / | 0 0 0 0 f’ g’ h’ f g h

4-----------5 | 1 1 0 0 f g’ h’ f’ g h
| | | | 2 0 1 0 f’ g h’ f g’ h
| | | | 3 1 1 0 f g h’ f’ g’ h
| 2-------|---3 4 0 0 1 f’ g’ h f g h’
| / | / 5 1 0 1 f g’ h f’ g h’

h g | / | / 6 0 1 1 f’ g h f g’ h’
|/ |/ |/ 7 1 1 1 f g h f’ g’ h’
+-f 0-----------1 ===== ======= ========= ===========

Note: The f g h column is the binary representation of num written in little-endian order.

pyeda.boolalg.boolfunc.point2upoint(point)
Convert point into an untyped point.

pyeda.boolalg.boolfunc.point2term(point, conj=False)
Convert point into a min/max term.

If conj is False, return a minterm. Otherwise, return a maxterm.

pyeda.boolalg.boolfunc.iter_points(vs)
Iterate through all points in an N-dimensional space.

The vs argument is a sequence of 𝑁 Boolean variables.

pyeda.boolalg.boolfunc.iter_upoints(vs)
Iterate through all untyped points in an N-dimensional space.

The vs argument is a sequence of 𝑁 Boolean variables.

74 Chapter 1. Contents



Python EDA Documentation, Release 0.24.0

pyeda.boolalg.boolfunc.iter_terms(fs, conj=False)
Iterate through all min/max terms in an N-dimensional space.

The fs argument is a sequence of 𝑁 Boolean functions.

If conj is False, yield minterms. Otherwise, yield maxterms.

pyeda.boolalg.boolfunc.vpoint2point(vpoint)
Convert vpoint into a point in an N-dimensional Boolean space.

The vpoint argument is a mapping from multi-dimensional arrays of variables to matching arrays of 0, 1. Ele-
ments from the values array will be converted to 0, 1 using the int builtin function.

For example:

>>> from pyeda.boolalg.expr import exprvar
>>> a = exprvar(’a’)
>>> b00, b01, b10, b11 = map(exprvar, "b00 b01 b10 b11".split())
>>> vpoint = {a: 0, ((b00, b01), (b10, b11)): ["01", "01"]}
>>> point = vpoint2point(vpoint)
>>> point[a], point[b00], point[b01], point[b10], point[b11]
(0, 0, 1, 0, 1)

The vpoint mapping is more concise if B is an farray:

>>> from pyeda.boolalg.expr import exprvar
>>> from pyeda.boolalg.bfarray import exprvars
>>> a = exprvar(’a’)
>>> B = exprvars(’b’, 2, 2)
>>> vpoint = {a: 0, B: ["01", "01"]}
>>> point = vpoint2point(vpoint)
>>> point[a], point[B[0,0]], point[B[0,1]], point[B[1,0]], point[B[1,1]]
(0, 0, 1, 0, 1)

The shape of the array must match the shape of its values:

>>> from pyeda.boolalg.bfarray import exprvars
>>> X = exprvars(’x’, 2, 2)
>>> vpoint = {X: "0101"}
>>> point = vpoint2point(vpoint)
Traceback (most recent call last):

...
ValueError: expected 1:1 mapping from Variable => {0, 1}

Interface Classes

class pyeda.boolalg.boolfunc.Variable(names, indices)
Base class for a symbolic Boolean variable.

A Boolean variable is an abstract numerical quantity that may assume any value in the set 𝐵 = {0, 1}.

Note: Do NOT instantiate a Variable directly. Instead, use one of the concrete im-
plementations: pyeda.boolalg.bdd.bddvar() pyeda.boolalg.expr.exprvar(),
pyeda.boolalg.table.ttvar().

A variable is defined by one or more names, and zero or more indices. Multiple names establish hierarchical
namespaces, and multiple indices group several related variables.
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Each variable has a unique, positive integer called the uniqid. This integer may be used to identify a variable
that is represented by more than one data structure. For example, bddvar(’a’, 0) and exprvar(’a’,
0) will refer to two different Variable instances, but both will share the same uniqid.

All variables are implicitly ordered. If two variable names are identical, compare their indices. Otherwise, do a
string comparison of their names. This is only useful where variable order matters, and is not meaningful in any
algebraic sense.

For example, the following statements are true:

•a == a

•a < b

•a[0] < a[1]

•a[0][1] < a[0][2]

name
Return the innermost variable name.

qualname
Return the fully qualified name.

class pyeda.boolalg.boolfunc.Function
Abstract base class that defines an interface for a symbolic Boolean function of 𝑁 variables.

__invert__()
Boolean negation operator

𝑓 𝑓 ′

0 1
1 0

__or__(g)
Boolean disjunction (sum, OR) operator

𝑓 𝑔 𝑓 + 𝑔
0 0 0
0 1 1
1 0 1
1 1 1

__and__(g)
Boolean conjunction (product, AND) operator

𝑓 𝑔 𝑓 · 𝑔
0 0 0
0 1 0
1 0 0
1 1 1

__xor__(g)
Boolean exclusive or (XOR) operator

𝑓 𝑔 𝑓 ⊕ 𝑔
0 0 0
0 1 1
1 0 1
1 1 0

__add__(other)
Convert this Function to an farray, and concatenate other to the end.
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The other argument may be a Function or an farray.

__mul__(num)
Return an farray of this variable repeated num times.

support
Return the support set of a function.

Let 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) be a Boolean function of 𝑁 variables.

The unordered set {𝑥1, 𝑥2, . . . , 𝑥𝑛} is called the support of the function.

usupport
Return the untyped support set of a function.

inputs
Return the support set in name/index order.

top
Return the first variable in the ordered support set.

degree
Return the degree of a function.

A function from 𝐵𝑁 ⇒ 𝐵 is called a Boolean function of degree 𝑁 .

cardinality
Return the cardinality of the relation 𝐵𝑁 ⇒ 𝐵.

Always equal to 2𝑁 .

iter_domain()
Iterate through all points in the domain.

iter_image()
Iterate through all elements in the image.

iter_relation()
Iterate through all (point, element) pairs in the relation.

restrict(point)
Return the Boolean function that results after restricting a subset of its input variables to {0, 1}.

𝑓 | 𝑥𝑖 = 𝑏

vrestrict(vpoint)
Expand all vectors before applying ‘restrict’.

compose(mapping)
Return the Boolean function that results after substituting a subset of its input variables for other Boolean
functions.

𝑓1 | 𝑥𝑖 = 𝑓2

satisfy_one()
If this function is satisfiable, return a satisfying input point. A tautology may return a zero-dimensional
point; a contradiction must return None.

satisfy_all()
Iterate through all satisfying input points.

satisfy_count()
Return the cardinality of the set of all satisfying input points.
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iter_cofactors(vs=None)
Iterate through the cofactors of a function over N variables.

The vs argument is a sequence of 𝑁 Boolean variables.

The cofactor of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥𝑖 is: 𝑓𝑥𝑖
= 𝑓(𝑥1, 𝑥2, . . . , 1, . . . , 𝑥𝑛)

The cofactor of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥′
𝑖 is: 𝑓𝑥′

𝑖
= 𝑓(𝑥1, 𝑥2, . . . , 0, . . . , 𝑥𝑛)

cofactors(vs=None)
Return a tuple of the cofactors of a function over N variables.

The vs argument is a sequence of 𝑁 Boolean variables.

The cofactor of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥𝑖 is: 𝑓𝑥𝑖
= 𝑓(𝑥1, 𝑥2, . . . , 1, . . . , 𝑥𝑛)

The cofactor of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥′
𝑖 is: 𝑓𝑥′

𝑖
= 𝑓(𝑥1, 𝑥2, . . . , 0, . . . , 𝑥𝑛)

smoothing(vs=None)
Return the smoothing of a function over a sequence of N variables.

The vs argument is a sequence of 𝑁 Boolean variables.

The smoothing of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥𝑖 is: 𝑆𝑥𝑖(𝑓) = 𝑓𝑥𝑖 + 𝑓𝑥′
𝑖

This is the same as the existential quantification operator: ∃{𝑥1, 𝑥2, . . . } 𝑓

consensus(vs=None)
Return the consensus of a function over a sequence of N variables.

The vs argument is a sequence of 𝑁 Boolean variables.

The consensus of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥𝑖 is: 𝐶𝑥𝑖(𝑓) = 𝑓𝑥𝑖 · 𝑓𝑥′
𝑖

This is the same as the universal quantification operator: ∀{𝑥1, 𝑥2, . . . } 𝑓

derivative(vs=None)
Return the derivative of a function over a sequence of N variables.

The vs argument is a sequence of 𝑁 Boolean variables.

The derivative of 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) with respect to variable 𝑥𝑖 is: 𝜕
𝜕𝑥𝑖

𝑓 = 𝑓𝑥𝑖
⊕ 𝑓𝑥′

𝑖

This is also known as the Boolean difference.

is_zero()
Return whether this function is zero.

Note: This method will only look for a particular “zero form”, and will NOT do a full search for a
contradiction.

is_one()
Return whether this function is one.

Note: This method will only look for a particular “one form”, and will NOT do a full search for a
tautology.

static box(obj)
Convert primitive types to a Function.

unbox()
Return integer 0 or 1 if possible, otherwise return the Function.
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1.11.3 pyeda.boolalg.bdd — Binary Decision Diagrams

The pyeda.boolalg.bdd module implements Boolean functions represented as binary decision diagrams.

Interface Functions:

• bddvar()

• expr2bdd()

• bdd2expr()

• upoint2bddpoint()

Interface Classes:

• BDDNode

• BinaryDecisionDiagram

• BDDConstant

• BDDVariable

Interface Functions

pyeda.boolalg.bdd.bddvar(name, index=None)
Return a unique BDD variable.

A Boolean variable is an abstract numerical quantity that may assume any value in the set 𝐵 = {0, 1}. The
bddvar function returns a unique Boolean variable instance represented by a binary decision diagram. Variable
instances may be used to symbolically construct larger BDDs.

A variable is defined by one or more names, and zero or more indices. Multiple names establish hierarchical
namespaces, and multiple indices group several related variables. If the name parameter is a single str, it will
be converted to (name, ). The index parameter is optional; when empty, it will be converted to an empty
tuple (). If the index parameter is a single int, it will be converted to (index, ).

Given identical names and indices, the bddvar function will always return the same variable:

>>> bddvar(’a’, 0) is bddvar(’a’, 0)
True

To create several single-letter variables:

>>> a, b, c, d = map(bddvar, "abcd")

To create variables with multiple names (inner-most first):

>>> fifo_push = bddvar((’push’, ’fifo’))
>>> fifo_pop = bddvar((’pop’, ’fifo’))

See also:

For creating arrays of variables with incremental indices, we recommend using the
pyeda.boolalg.bfarray.bddvars() function.

pyeda.boolalg.bdd.expr2bdd(expr)
Convert an expression into a binary decision diagram.

pyeda.boolalg.bdd.bdd2expr(bdd, conj=False)
Convert a binary decision diagram into an expression.
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pyeda.boolalg.bdd.upoint2bddpoint(upoint)
Convert an untyped point into a BDD point.

Interface Classes

class pyeda.boolalg.bdd.BDDNode(root, lo, hi)
Binary decision diagram node

Note: Never construct a BDDNode instance directly. They will automically be created and destroyed during
symbolic manipulation.

class pyeda.boolalg.bdd.BinaryDecisionDiagram(node)
Boolean function represented by a binary decision diagram

Note: Never construct a BinaryDecisionDiagram instance directly. They will automatically be created
and destroyed during symbolic manipulation.

dfs_preorder()
Iterate through nodes in DFS pre-order.

dfs_postorder()
Iterate through nodes in DFS post-order.

bfs()
Iterate through nodes in BFS order.

equivalent(other)
Return whether this BDD is equivalent to another.

to_dot(name=’BDD’)
Convert to DOT language representation.

class pyeda.boolalg.bdd.BDDConstant(node)
Binary decision diagram constant

Note: Never construct a BDDConstant instance directly. Use the int values 0 and 1 instead.

class pyeda.boolalg.bdd.BDDVariable(bvar)
Binary decision diagram variable

Note: Never construct a BDDVariable instance directly. Use the bddvar() function instead.

1.11.4 pyeda.boolalg.expr — Expressions

The pyeda.boolalg.expr module implements Boolean functions represented as expressions.

Interface Functions:

• exprvar()

• expr()

• ast2expr()

• expr2dimacscnf()

• upoint2exprpoint()
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• Not()

• Or()

• And()

• Nor()

• Nand()

• Xor()

• Xnor()

• Equal()

• Unequal()

• Implies()

• ITE()

• OneHot0()

• OneHot()

• Majority()

• AchillesHeel()

• Mux()

Interface Classes:

• Expression

• ExprConstant

• ExprLiteral

• ExprVariable

• ExprComplement

• ExprNot

• ExprOrAnd

• ExprOr

• ExprAnd

• ExprNorNand

• ExprNor

• ExprNand

• ExprExclusive

• ExprXor

• ExprXnor

• ExprEqualBase

• ExprEqual

• ExprUnequal

• ExprImplies
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• ExprITE

• NormalForm

• DisjNormalForm

• ConjNormalForm

• DimacsCNF

Interface Functions

pyeda.boolalg.expr.exprvar(name, index=None)
Return a unique Expression variable.

A Boolean variable is an abstract numerical quantity that may assume any value in the set 𝐵 = {0, 1}. The
exprvar function returns a unique Boolean variable instance represented by an expression. Variable instances
may be used to symbolically construct larger expressions.

A variable is defined by one or more names, and zero or more indices. Multiple names establish hierarchical
namespaces, and multiple indices group several related variables. If the name parameter is a single str, it will
be converted to (name, ). The index parameter is optional; when empty, it will be converted to an empty
tuple (). If the index parameter is a single int, it will be converted to (index, ).

Given identical names and indices, the exprvar function will always return the same variable:

>>> exprvar(’a’, 0) is exprvar(’a’, 0)
True

To create several single-letter variables:

>>> a, b, c, d = map(exprvar, "abcd")

To create variables with multiple names (inner-most first):

>>> fifo_push = exprvar((’push’, ’fifo’))
>>> fifo_pop = exprvar((’pop’, ’fifo’))

See also:

For creating arrays of variables with incremental indices, we recommend using the
pyeda.boolalg.bfarray.exprvars() function.

pyeda.boolalg.expr.expr(obj, simplify=True)
Convert an arbitrary object into an Expression.

pyeda.boolalg.expr.ast2expr(ast)
Convert an abstract syntax tree to an Expression.

pyeda.boolalg.expr.expr2dimacscnf(expr)
Convert an expression into an equivalent DIMACS CNF.

pyeda.boolalg.expr.upoint2exprpoint(upoint)
Convert an untyped point to an Expression point.

Logic Factory Functions

Primary Operators
pyeda.boolalg.expr.Not(arg, simplify=True)

Factory function for Boolean NOT expression.
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pyeda.boolalg.expr.Or(*args, simplify=True)
Factory function for Boolean OR expression.

pyeda.boolalg.expr.And(*args, simplify=True)
Factory function for Boolean AND expression.

Secondary Operators
pyeda.boolalg.expr.Nor(*args, simplify=True)

Alias for Not(Or(...))
pyeda.boolalg.expr.Nand(*args, simplify=True)

Alias for Not(And(...))

pyeda.boolalg.expr.Xor(*args, simplify=True)
Factory function for Boolean XOR expression.

pyeda.boolalg.expr.Xnor(*args, simplify=True)
Factory function for Boolean XNOR expression.

pyeda.boolalg.expr.Equal(*args, simplify=True)
Factory function for Boolean EQUAL expression.

pyeda.boolalg.expr.Unequal(*args, simplify=True)
Factory function for Boolean UNEQUAL expression.

pyeda.boolalg.expr.Implies(p, q, simplify=True)
Factory function for Boolean implication expression.

pyeda.boolalg.expr.ITE(s, d1, d0, simplify=True)
Factory function for Boolean If-Then-Else expression.

High Order Operators
pyeda.boolalg.expr.OneHot0(*args, simplify=True, conj=True)

Return an expression that means: At most one input variable is true.
pyeda.boolalg.expr.OneHot(*args, simplify=True, conj=True)

Return an expression that means: Exactly one input variable is true.

pyeda.boolalg.expr.Majority(*args, simplify=True, conj=False)

Return an expression that means: The majority of the input variables are true.

pyeda.boolalg.expr.AchillesHeel(*args, simplify=True)
Return the Achille’s Heel function, defined as

∏︀𝑛/2−1
𝑖=0 𝑋2𝑖 +𝑋2𝑖+1.

pyeda.boolalg.expr.Mux(fs, sel, simplify=True)
Return an expression that multiplexes a sequence of input functions over a sequence of select functions.

Interface Classes

Expression Tree Nodes

class pyeda.boolalg.expr.Expression
Boolean function represented by a logic expression

to_unicode()
Return a string representation using Unicode symbols.
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to_latex()
Return a string representation using Latex.

invert()
Return an inverted expression.

simplify()
Return a simplified expression.

simplified
Return True if the expression is simplified.

factor(conj=False)
Return a factored expression.

A factored expression is one and only one of the following:

•A literal.

•A disjunction / conjunction of factored expressions.

Parameters

conj [bool] Always choose a conjunctive form when there’s a choice

depth
Return the depth of the expression tree.

Expression depth is defined recursively:

1.A leaf node (constant or literal) has zero depth.

2.A branch node (operator) has depth equal to the maximum depth of its children (arguments) plus one.

to_ast()
Return the expression converted to an abstract syntax tree.

expand(vs=None, conj=False)
Return the Shannon expansion with respect to a list of variables.

flatten(op)
Return a factored, flattened expression.

Use the distributive law to flatten all nested expressions:

𝑎+ (𝑏 · 𝑐) = (𝑎+ 𝑏) · (𝑎+ 𝑐)

𝑎 · (𝑏+ 𝑐) = (𝑎 · 𝑏) + (𝑎 · 𝑐)

op [ExprOr or ExprAnd] The operator you want to flatten. For example, if you want to produce an ExprOr
expression, flatten all the nested ExprAnds.

to_dnf(flatten=True)
Return the expression in disjunctive normal form.

to_cdnf(flatten=True)
Return the expression in canonical disjunctive normal form.

to_cnf(flatten=True)
Return the expression in conjunctive normal form.

to_ccnf(flatten=True)
Return the expression in canonical conjunctive normal form.

cover
Return the DNF expression as a cover of cubes.
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absorb()
Return the DNF/CNF expression after absorption.

𝑎+ (𝑎 · 𝑏) = 𝑎

𝑎 · (𝑎+ 𝑏) = 𝑎

reduce()
Reduce the DNF/CNF expression to a canonical form.

encode_inputs()
Return a compact encoding for input variables.

encode_dnf()
Encode as a compact DNF.

encode_cnf()
Encode as a compact CNF.

tseitin(auxvarname=’aux’)
Convert the expression to Tseitin’s encoding.

complete_sum()
Return a DNF that contains all prime implicants.

equivalent(other)
Return True if this expression is equivalent to other.

to_dot(name=’EXPR’)
Convert to DOT language representation.

class pyeda.boolalg.expr.ExprConstant
Expression constant

class pyeda.boolalg.expr.ExprLiteral
An instance of a variable or of its complement

class pyeda.boolalg.expr.ExprVariable(bvar)
Expression variable

class pyeda.boolalg.expr.ExprComplement(exprvar)
Expression complement

class pyeda.boolalg.expr.ExprNot(arg)
Expression NOT operator

class pyeda.boolalg.expr.ExprOrAnd(*args)
Base class for Expression OR/AND expressions

class pyeda.boolalg.expr.ExprOr(*args)
Expression OR operator

class pyeda.boolalg.expr.ExprAnd(*args)
Expression AND operator

class pyeda.boolalg.expr.ExprNorNand(*args)
Base class for Expression NOR/NAND expressions

class pyeda.boolalg.expr.ExprNor(*args)
Expression NOR operator

class pyeda.boolalg.expr.ExprNand(*args)
Expression NAND operator
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class pyeda.boolalg.expr.ExprExclusive(*args)
Expression exclusive (XOR, XNOR) operator

class pyeda.boolalg.expr.ExprXor(*args)
Expression Exclusive OR (XOR) operator

class pyeda.boolalg.expr.ExprXnor(*args)
Expression Exclusive NOR (XNOR) operator

class pyeda.boolalg.expr.ExprEqualBase(*args)
Expression equality (EQUAL, UNEQUAL) operators

class pyeda.boolalg.expr.ExprEqual(*args)
Expression EQUAL operator

class pyeda.boolalg.expr.ExprUnequal(*args)
Expression UNEQUAL operator

class pyeda.boolalg.expr.ExprImplies(p, q)
Expression implication operator

class pyeda.boolalg.expr.ExprITE(s, d1, d0)
Expression if-then-else ternary operator

Normal Forms

class pyeda.boolalg.expr.NormalForm(nvars, clauses)
Normal form expression

class pyeda.boolalg.expr.DisjNormalForm(nvars, clauses)
Disjunctive normal form expression

class pyeda.boolalg.expr.ConjNormalForm(nvars, clauses)
Conjunctive normal form expression

class pyeda.boolalg.expr.DimacsCNF(nvars, clauses)
Wrapper class for a DIMACS CNF representation

1.11.5 pyeda.boolalg.bfarray — Boolean Function Arrays

The pyeda.boolalg.bfarray module implements multi-dimensional arrays of Boolean functions.

Interface Functions:

• bddzeros()

• bddones()

• bddvars()

• exprzeros()

• exprones()

• exprvars()

• ttzeros()

• ttones()

• ttvars()

• uint2bdds()
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• uint2exprs()

• uint2tts()

• int2bdds()

• int2exprs()

• int2tts()

• fcat()

Interface Classes:

• farray()

Interface Functions

pyeda.boolalg.bfarray.bddzeros(*dims)
Return a multi-dimensional farray of BDDZERO.

BDDZERO is the BDD representation of the number zero.

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop
index). If a dimension is given as a single int, it will be converted to (0, stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the
Python slice convention.

For example, to create a 4x4 farray of BDD zeros:

>>> zeros = bddzeros(4, 4)
>>> zeros
farray([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])

pyeda.boolalg.bfarray.bddones(*dims)
Return a multi-dimensional farray of BDDONE.

BDDONE is the BDD representation of the number one.

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop
index). If a dimension is given as a single int, it will be converted to (0, stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the
Python slice convention.

For example, to create a 4x4 farray of BDD ones:

>>> ones = bddones(4, 4)
>>> ones
farray([[1, 1, 1, 1],

[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]])

pyeda.boolalg.bfarray.bddvars(name, *dims)
Return a multi-dimensional farray of BDD variables.

The name argument is passed directly to the pyeda.boolalg.bdd.bddvar() function, and may be either
a str or tuple of str.
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The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop
index). If a dimension is given as a single int, it will be converted to (0, stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the
Python slice convention.

For example, to create a 4x4 farray of BDD variables:

>>> vs = bddvars(’a’, 4, 4)
>>> vs
farray([[a[0,0], a[0,1], a[0,2], a[0,3]],

[a[1,0], a[1,1], a[1,2], a[1,3]],
[a[2,0], a[2,1], a[2,2], a[2,3]],
[a[3,0], a[3,1], a[3,2], a[3,3]]])

pyeda.boolalg.bfarray.exprzeros(*dims)
Return a multi-dimensional farray of EXPRZERO.

EXPRZERO is the expression representation of the number zero.

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop
index). If a dimension is given as a single int, it will be converted to (0, stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the
Python slice convention.

For example, to create a 4x4 farray of expression zeros:

>>> zeros = exprzeros(4, 4)
>>> zeros
farray([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])

pyeda.boolalg.bfarray.exprones(*dims)
Return a multi-dimensional farray of EXPRONE.

EXPRONE is the expression representation of the number one.

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop
index). If a dimension is given as a single int, it will be converted to (0, stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the
Python slice convention.

For example, to create a 4x4 farray of expression ones:

>>> ones = exprones(4, 4)
>>> ones
farray([[1, 1, 1, 1],

[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]])

pyeda.boolalg.bfarray.exprvars(name, *dims)
Return a multi-dimensional farray of expression variables.

The name argument is passed directly to the pyeda.boolalg.expr.exprvar() function, and may be
either a str or tuple of str.

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop
index). If a dimension is given as a single int, it will be converted to (0, stop).
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The dimension starts at index start, and increments by one up to, but not including, stop. This follows the
Python slice convention.

For example, to create a 4x4 farray of expression variables:

>>> vs = exprvars(’a’, 4, 4)
>>> vs
farray([[a[0,0], a[0,1], a[0,2], a[0,3]],

[a[1,0], a[1,1], a[1,2], a[1,3]],
[a[2,0], a[2,1], a[2,2], a[2,3]],
[a[3,0], a[3,1], a[3,2], a[3,3]]])

pyeda.boolalg.bfarray.ttzeros(*dims)
Return a multi-dimensional farray of TTZERO.

TTZERO is the truth table representation of the number zero.

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop
index). If a dimension is given as a single int, it will be converted to (0, stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the
Python slice convention.

For example, to create a 4x4 farray of truth table zeros:

>>> zeros = ttzeros(4, 4)
>>> zeros
farray([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])

pyeda.boolalg.bfarray.ttones(*dims)
Return a multi-dimensional farray of TTONE.

TTONE is the truth table representation of the number one.

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop
index). If a dimension is given as a single int, it will be converted to (0, stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the
Python slice convention.

For example, to create a 4x4 farray of truth table ones:

>>> ones = ttones(4, 4)
>>> ones
farray([[1, 1, 1, 1],

[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]])

pyeda.boolalg.bfarray.ttvars(name, *dims)
Return a multi-dimensional farray of truth table variables.

The name argument is passed directly to the pyeda.boolalg.table.ttvar() function, and may be
either a str or tuple of str.

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop
index). If a dimension is given as a single int, it will be converted to (0, stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the
Python slice convention.
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For example, to create a 4x4 farray of truth table variables:

>>> vs = ttvars(’a’, 4, 4)
>>> vs
farray([[a[0,0], a[0,1], a[0,2], a[0,3]],

[a[1,0], a[1,1], a[1,2], a[1,3]],
[a[2,0], a[2,1], a[2,2], a[2,3]],
[a[3,0], a[3,1], a[3,2], a[3,3]]])

pyeda.boolalg.bfarray.uint2bdds(num, length=None)
Convert num to an farray of BDDs.

The num argument is a non-negative integer.

If no length parameter is given, the return value will have the minimal required length. Otherwise, the return
value will be zero-extended to match length.

For example, to convert the byte 42 (binary 0b00101010):

>>> uint2bdds(42, 8)
farray([0, 1, 0, 1, 0, 1, 0, 0])

pyeda.boolalg.bfarray.uint2exprs(num, length=None)
Convert num to an farray of expressions.

The num argument is a non-negative integer.

If no length parameter is given, the return value will have the minimal required length. Otherwise, the return
value will be zero-extended to match length.

For example, to convert the byte 42 (binary 0b00101010):

>>> uint2exprs(42, 8)
farray([0, 1, 0, 1, 0, 1, 0, 0])

pyeda.boolalg.bfarray.uint2tts(num, length=None)
Convert num to an farray of truth tables.

The num argument is a non-negative integer.

If no length parameter is given, the return value will have the minimal required length. Otherwise, the return
value will be zero-extended to match length.

For example, to convert the byte 42 (binary 0b00101010):

>>> uint2tts(42, 8)
farray([0, 1, 0, 1, 0, 1, 0, 0])

pyeda.boolalg.bfarray.int2bdds(num, length=None)
Convert num to an farray of BDDs.

The num argument is an int. Negative numbers will be converted using twos-complement notation.

If no length parameter is given, the return value will have the minimal required length. Otherwise, the return
value will be sign-extended to match length.

For example, to convert the bytes 42 (binary 0b00101010), and -42 (binary 0b11010110):

>>> int2bdds(42, 8)
farray([0, 1, 0, 1, 0, 1, 0, 0])
>>> int2bdds(-42, 8)
farray([0, 1, 1, 0, 1, 0, 1, 1])
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pyeda.boolalg.bfarray.int2exprs(num, length=None)
Convert num to an farray of expressions.

The num argument is an int. Negative numbers will be converted using twos-complement notation.

If no length parameter is given, the return value will have the minimal required length. Otherwise, the return
value will be sign-extended to match length.

For example, to convert the bytes 42 (binary 0b00101010), and -42 (binary 0b11010110):

>>> int2exprs(42, 8)
farray([0, 1, 0, 1, 0, 1, 0, 0])
>>> int2exprs(-42, 8)
farray([0, 1, 1, 0, 1, 0, 1, 1])

pyeda.boolalg.bfarray.int2tts(num, length=None)
Convert num to an farray of truth tables.

The num argument is an int. Negative numbers will be converted using twos-complement notation.

If no length parameter is given, the return value will have the minimal required length. Otherwise, the return
value will be sign-extended to match length.

For example, to convert the bytes 42 (binary 0b00101010), and -42 (binary 0b11010110):

>>> int2tts(42, 8)
farray([0, 1, 0, 1, 0, 1, 0, 0])
>>> int2tts(-42, 8)
farray([0, 1, 1, 0, 1, 0, 1, 1])

pyeda.boolalg.bfarray.fcat(*fs)
Concatenate a sequence of farrays.

Interface Classes

class pyeda.boolalg.bfarray.farray(objs, shape=None, ftype=None)
Array of Boolean functions

size
Return the size of the farray.

offsets
Return a tuple of dimension offsets.

ndim
Return the number of dimensions.

reshape(*dims)
Return an equivalent farray with modified dimensions.

flat
Return a 1D iterator over the farray.

restrict(point)
Return the farray that results from applying the restrict method to all functions.

vrestrict(vpoint)
Expand all vectors before applying restrict.

to_uint()
Convert vector to an unsigned integer, if possible.
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to_int()
Convert vector to an integer, if possible.

zext(num)
Return a flat copy of this array, zero-extended by N bits.

sext(num)
Return a flat copy of this array, sign-extended by N bits.

__invert__()
Return the bit-wise NOT of the farray.

__or__(other)
Return the bit-wise OR of the farray and other.

__and__(other)
Return the bit-wise AND of the farray and other.

__xor__(other)
Return the bit-wise XOR of the farray and other.

__lshift__(obj)
Return the farray left-shifted by obj.

The obj argument may either be an int, or (int, farray). The int argument is num, and the
farray argument is cin.

See also:

lsh()

__rshift__(obj)
Return the farray right-shifted by obj.

The obj argument may either be an int, or (int, farray). The int argument is num, and the
farray argument is cin.

See also:

rsh()

uor()
Return the unary OR of a array of functions.

unor()
Return the unary NOR of a array of functions.

uand()
Return the unary AND of a array of functions.

unand()
Return the unary NAND of a array of functions.

uxor()
Return the unary XOR of a array of functions.

uxnor()
Return the unary XNOR of a array of functions.

lsh(num, cin=None)
Return the farray left-shifted by num places.

The num argument must be a non-negative int.

If the cin farray is provided, it will be shifted in. Otherwise, the carry-in is zero.
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Returns a two-tuple (farray fs, farray cout), where fs is the shifted vector, and cout is the “carry out”.

rsh(num, cin=None)
Return the farray right-shifted by num places.

The num argument must be a non-negative int.

If the cin farray is provided, it will be shifted in. Otherwise, the carry-in is zero.

Returns a two-tuple (farray fs, farray cout), where fs is the shifted vector, and cout is the “carry out”.

arsh(num)
Return the farray arithmetically right-shifted by num places.

The num argument must be a non-negative int.

The carry-in will be the value of the most significant bit.

decode()
Return symbolic logic for an 𝑁 → 2𝑁 binary decoder.

Example Truth Table for a 2:4 decoder:

𝐴1 𝐴0 𝐷3 𝐷2 𝐷1 𝐷0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

1.11.6 pyeda.boolalg.minimization — Logic Minimization

The pyeda.boolalg.minimization module contains interface functions for two-level logic minimization.

Interface Functions:

• espresso_exprs()

• espresso_tts()

Interface Functions

pyeda.boolalg.minimization.espresso_exprs(*exprs)
Return a tuple of expressions optimized using Espresso.

The variadic exprs argument is a sequence of expressions.

For example:

>>> from pyeda.boolalg.expr import exprvar
>>> a, b, c = map(exprvar, ’abc’)
>>> f1 = ~a & ~b & ~c | ~a & ~b & c | a & ~b & c | a & b & c | a & b & ~c
>>> f2 = f2 = ~a & ~b & c | a & ~b & c
>>> f1m, f2m = espresso_exprs(f1, f2)
>>> f1m
Or(And(~a, ~b), And(a, b), And(~b, c))
>>> f2m
And(~b, c)

pyeda.boolalg.minimization.espresso_tts(*tts)
Return a tuple of expressions optimized using Espresso.

The variadic tts argument is a sequence of truth tables.
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For example:

>>> from pyeda.boolalg.bfarray import ttvars
>>> from pyeda.boolalg.table import truthtable
>>> X = ttvars(’x’, 4)
>>> f1 = truthtable(X, "0000011111------")
>>> f2 = truthtable(X, "0001111100------")
>>> f1m, f2m = espresso_tts(f1, f2)
>>> f1m
Or(x[3], And(x[0], x[2]), And(x[1], x[2]))
>>> f2m
Or(x[2], And(x[0], x[1]))

1.11.7 pyeda.boolalg.picosat — PicoSAT C Extension

Interface to PicoSAT SAT solver C extension

Constants

VERSION
PicoSAT version string

COPYRIGHT
PicoSAT copyright statement

Exceptions

exception PicosatError
An error happened inside PicoSAT. Examples include initialization errors, and unexpected return codes.

Interface Functions

satisfy_one(nvars, clauses, assumptions, verbosity=0, default_phase=2, propagation_limit=-1,
decision_limit=-1)

If the input CNF is satisfiable, return a satisfying input point. A contradiction will return None.

Parameters

nvars [posint] Number of variables in the CNF

clauses [iter of iter of (nonzero) int] The CNF clauses

assumptions [iter of (nonzero) int] Add assumptions (unit clauses) to the CNF

verbosity [int, optional] Set verbosity level. A verbosity level of 1 and above prints more and more detailed
progress reports to stdout.

default_phase : {0, 1, 2, 3}

Set default initial phase:

• 0 = false

• 1 = true

• 2 = Jeroslow-Wang (default)

• 3 = random
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progagation_limit [int] Set a limit on the number of propagations. A negative value sets no propagation limit.

decision_limit [int] Set a limit on the number of decisions. A negative value sets no decision limit.

Returns

tuple of {-1, 0, 1}

• -1 : zero

• 0 : dont-care

• 1 : one

satisfy_all(nvars, clauses, verbosity=0, default_phase=2, propagation_limit=-1, decision_limit=-1)
Iterate through all satisfying input points.

Parameters

nvars [posint] Number of variables in the CNF

clauses [iter of iter of (nonzero) int] The CNF clauses

verbosity [int, optional] Set verbosity level. A verbosity level of 1 and above prints more and more detailed
progress reports to stdout.

default_phase [{0, 1, 2, 3}]

Set default initial phase:

• 0 = false

• 1 = true

• 2 = Jeroslow-Wang (default)

• 3 = random

progagation_limit [int] Set a limit on the number of propagations. A negative value sets no propagation limit.

decision_limit [int] Set a limit on the number of decisions. A negative value sets no decision limit.

Returns

iter of tuple of {-1, 0, 1}

• -1 : zero

• 0 : dont-care

• 1 : one

1.11.8 pyeda.boolalg.espresso — Espresso C Extension

Constants

FTYPE

DTYPE

RTYPE
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Exceptions

exception EspressoError
An error happened inside Espresso.

Interface Functions

get_config()
Return a dict of Espresso global configuration values.

set_config(single_expand=0, remove_essential=0, force_irredundant=0, unwrap_onset=0, recom-
pute_onset=0, use_super_gasp=0, skip_make_sparse=0)

Set Espresso global configuration values.

espresso(ninputs, noutputs, cover, intype=FTYPE|DTYPE)
Return a logically equivalent, (near) minimal cost set of product-terms to represent the ON-set and optionally
minterms that lie in the DC-set, without containing any minterms of the OFF-set.

Parameters

ninputs [posint] Number of inputs in the implicant in-part vector.

noutputs [posint] Number of outputs in the implicant out-part vector.

cover [iter(((int), (int)))] The iterator over multi-output implicants. A multi-output implicant is a pair of row
vectors of dimension ninputs, and noutputs, respectively. The input part contains integers in positional
cube notation, and the output part contains entries in {0, 1, 2}.

• ‘0’ means 0 for R-type covers, otherwise has no meaning.

• ‘1’ means 1 for F-type covers, otherwise has no meaning.

• ‘2’ means “don’t care” for D-type covers, otherwise has no meaning.

intype [int] A flag field that indicates the type of the input cover. F-type = 1, D-type = 2, R-type = 4

Returns

set of implicants in the same format as the input cover
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