Python EDA Documentation

 Release 0.27.1
Chris Drake

March 02, 2015
1 Contents 3
1.1 Overview 3
1.2 Installing PyEDA 4
1.3 Boolean Algebra 5
1.4 Binary Decision Diagrams 15
1.5 Boolean Expressions 25
1.6 Function Arrays 39
1.7 Two-level Logic Minimization 50
1.8 Using PyEDA to Solve Sudoku 54
1.9 All Solutions To The Eight Queens Puzzle 60
1.10 Release Notes 62
1.11 Reference 74
2 Indices and Tables 103
Python Module Index 105

Release 0.27.1
Date March 02, 2015
PyEDA is a Python library for electronic design automation.
Fork PyEDA: https://github.com/cjdrake/pyeda
Features:

- Symbolic Boolean algebra with a selection of function representations:
- Logic expressions
- Truth tables, with three output states (0,1 , "don't care")
- Reduced, ordered binary decision diagrams (ROBDDs)
- SAT solvers:
- Backtracking
- PicoSAT
- Espresso logic minimization
- Formal equivalence
- Multi-dimensional bit vectors
- DIMACS CNF/SAT parsers
- Logic expression parser

Python EDA Documentation, Release 0.27.1

Contents

1.1 Overview

1.1.1 What is Electronic Design Eutomation (EDA)?

The Intel 4004, the world's first commercially available microprocessor, was built from approximately 2300 transistors, and had a clock frequency of 740 kilohertz (thousands of cycles per second) ${ }^{12}$. A modern Intel microprocessor can contain over 1.5 billion transistors, and will typically have a clock frequency ranging from two to four gigahertz (billions of cycles per second).

In 1971 it took less than one hundred people to manufacture the 4004. That is approximately 23 transistors per employee. If that ratio stayed the same between 1971 and 2012, Intel would need to employ about 65 million people just to produce the latest Core i7 processor. That is one fifth the entire population of the United States!

Clearly, companies that design and manufacture integrated circuits have found ways to be more productive since then.
Simply stated, electronic design automation (EDA) is the science of optimizing productivity in the design and manufacture of electronic components.

1.1.2 Goals

After reading the previous section, EDA sounds like a vast field. The way we have defined it covers everything from controlling robotic arms in the fabrication plant to providing free coffee to keep interns busy. We need to narrow our focus a bit.

PyEDA is primarily concerned with implementing the data structures and algorithms necessary for performing logic synthesis and verification. These tools form the theoretical foundation for the implementation of CAD tools for designing VLSI (Very Large Scale Integrated circuit).
PyEDA is a hobby project, and is very unlikely to ever be a competitor to state-of-the-art EDA industry technology. It should be useful for academic exploration and experimentation. If you use PyEDA, please email the author with your success/failure stories.

1.1.3 Free Software

PyEDA is free software; you can use it or redistribute it under the terms of the "two-clause" BSD License.

[^0]
1.1.4 Repository

View the PyEDA source code on GitHub.

1.2 Installing PyEDA

This page describes how to procure your very own, shiny copy of PyEDA. It is a primary goal of the PyEDA project to be a mainstream Python package, and adhere to the majority of conventions observed by the community.

1.2.1 Supported Platforms

PyEDA supports Windows, and any platform with a C compiler. The author does development and testing on MacOS and Ubuntu Linux.

1.2.2 Supported Python Versions

Starting with version 0.15 , PyEDA will only work with Python 3.2+. Starting with version 0.23 , PyEDA will only work with Python 3.3+. There were several reasons to drop support for Python 2:

- Python 3 is the future of the language.
- Almost all scientific software either has already been ported, or is in the process of being ported to Python 3.
 expression factory functions.
- It is too arduous to research and support all the C API changes from version 2 to version 3. Preprocessor is evil.
- I am quite fond of the new yield from . . . syntax.

1.2.3 Distutils / Virtualenv

The latest PyEDA release is hosted on PyPI.
To get PyEDA with pip:

```
$ pip3 install pyeda
```

We strongly recommend that you also install an excellent Python tool called IPython. For interactive use, it is vastly superior to using the standard Python interpreter. To install IPython into your virtual environment:

```
$ pip3 install ipython
```


Linux Notes

If you are using the Linux system distribution of pip, most likely pip will be part of Python-2.x, which won't work. It's safer to always use pip3.
You will probably need to install the Python3 "development" package to get Python's headers and libraries. For Debian derivatives (eg Ubuntu), run sudo apt-get install python3-dev. On RedHat derivatives, run sudo yum install python3-devel.

Windows Notes

I highly recommend Christophe Gohlke's pythonlibs page for installing PyEDA on Windows.
If you are using a Windows wheel distribution, you may need to install the [Visual Studio 2012 Redis-tributable](http://www.microsoft.com/en-us/download/details.aspx?id=30679).

1.2.4 Getting the Source

The PyEDA repository is hosted on GitHub. If you want the bleeding-edge source code, here is how to get it:

```
$ git clone https://github.com/cjdrake/pyeda.git
$ cd pyeda
# SPREFIX is the root of the installation area
$ python setup.py install --prefix $PREFIX
```

If you want to build the documentation, you must have the excellent Sphinx documentaton system installed.

```
$ make html
```

If you want to run the tests, you must have the excellent Nose unit testing framework installed.

```
$ make test
Ran }72\mathrm{ tests in 15.123s
OK
```


1.3 Boolean Algebra

Boolean Algebra is a cornerstone of electronic design automation, and fundamental to several other areas of computer science and engineering. PyEDA has an extensive library for the creation and analysis of Boolean functions.

This document describes how to explore Boolean algebra using PyEDA. We will be using some mathematical language here and there, but please do not run away screaming in fear. This document assumes very little background knowledge.

1.3.1 What is Boolean Algebra?

All great stories have a beginning, so let's start with the basics. You probably took a class called "algebra" in (junior) high school. So when you started reading this document you were already confused. Algebra is just algebra, right? You solve for x, find the intersection of two lines, and you're done, right?

As it turns out, the high school algebra you are familiar with just scratches the surface. There are many algebras with equally many theoretical and practical uses. An algebra is the combination of two things:

1. a collection of mathematical objects, and
2. a collection of rules to manipulate those objects

For example, in high school algebra, you have numbers such as $\left\{1,3,5, \frac{1}{2}, .337\right\}$, and operators such as $\{+,-, \cdot, \div\}$. The numbers are the mathematical objects, and the operators are the rules for how to manipulate them. Except in very extreme circumstances (division by zero), whenever you add, subtract, or divide two numbers, you get another number.

Algebras are a big part of the "tools of the trade" for a mathematician. A plumber has a wrench, a carpenter has a saw, and a mathematician has algebras. To each his own.
A Boolean algebra defines the rules for working with the set $\{0,1\}$. So unlike in normal algebra class where you have more numbers than you can possibly imagine, in Boolean Algebra you only have two.

Even though it is possible to define a Boolean Algebra using different operators, by far the most common operators are complement, sum, and product.

Complement Operator

The complement operator is a unary operator, which means it acts on a single Boolean input: x. The Boolean complement of x is usually written as x^{\prime}, \bar{x}, or $\neg x$.

The output of the Boolean complement is defined by:

$$
\begin{aligned}
& \overline{0}=1 \\
& \overline{1}=0
\end{aligned}
$$

Sum Operator

The sum (or disjunction) operator is a binary operator, which means it acts on two Boolean inputs: (x, y). The Boolean sum of x and y is usually written as $x+y$, or $x \vee y$.

The output of the Boolean sum is defined by:

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=1
\end{aligned}
$$

This looks familiar so far except for the $1+1=1$ part. The Boolean sum operator is also called OR because the output of x or y equals 1 if and only if $x=1$, or $y=1$, or both.

Product Operator

The product (or conjunction) operator is also a binary operator. The Boolean product of x and y is usually written as $x \cdot y$, or $x \wedge y$.
The output of the Boolean product is defined by:

$$
\begin{aligned}
& 0 \cdot 0=0 \\
& 0 \cdot 1=0 \\
& 1 \cdot 0=0 \\
& 1 \cdot 1=1
\end{aligned}
$$

As you can see, the product operator looks exactly like normal multiplication. The Boolean product is also called AND because the output of x and y equals 1 if and only if both $x=1$, and $y=1$.

Other Binary Operators

For reference, here is a table of all binary Boolean operators:
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline f & g & 0 & \begin{array}{l}f \downarrow \\ g\end{array} & \begin{array}{l}f< \\ g\end{array} & f^{\prime} & \begin{array}{l}f> \\ g\end{array} & g^{\prime} & \begin{array}{l}f \neq \\ g\end{array} & \begin{array}{l}f \uparrow \\ g\end{array} & f \cdot g & f= & g & f \leq & f & f \geq & f+ & 1 \\ g\end{array}\right]$

Some additional notes:

- $f \downarrow g$ is the binary NOR (not or) operator.
- $f \uparrow g$ is the binary NAND (not and) operator.
- $f \leq g$ is commonly written using the binary implication operator $f \Longrightarrow g$.
- $f=g$ is commonly written using either the binary equivalence operator $f \Longleftrightarrow g$, or the binary XNOR (exclusive nor) operator $f \odot g$.
- $f \neq g$ is commonly written using the binary XOR (exclusive or) operator $f \oplus g$.

Additional Perspective

You are probably thinking this is all very nice, but what can you possibly do with an algebra that only concerns itself with 0,1 , NOT, OR, and AND?

In 1937, Claude Shannon realized that electronic circuits have two-value switches that can be combined into networks capable of solving any logical or numeric relationship. A transistor is nothing but an electrical switch. Similar to a light bulb, it has two states: off (0), and on (1). Wiring transistors together in serial imitates the AND operator, and wiring them together in parallel imitates the OR operator. If you wire a few thousand transistors together in interesting ways, you can build a computer.

1.3.2 Import Symbols from PyEDA

All examples in this document require that you execute the following statements in your interpreter:

```
>>> from pyeda.inter import *
```

If you want to see all the symbols you import with this statement, look into pyeda/inter. py.
Note: Using the from . . . import * syntax is generally frowned upon for Python programming, but is extremely convenient for interactive use.

1.3.3 Built-in Python Boolean Operations

Python has a built-in Boolean data type, bool. You can think of the False keyword as an alias for the number 0, and the True keyword as an alias for the number 1.

```
>>> int(False)
0
>>> int(True)
1
>>> bool(0)
```

```
False
>>> bool(1)
True
```

The keywords for complement, sum, and product are not, or, and.

```
>>> not True
False
>>> True or False
True
>>> True and False
False
```

You can use the Python interpreter to evaluate complex expressions:

```
>>> (True and False) or not (False or True)
False
```

PyEDA recognizes False, 0 , and ${ }^{\prime} 0^{\prime}$ as Boolean zero (0), and True, 1, and ' 1^{\prime} as Boolean one (1). You can use the int function to manually convert the bool and str data types to integers:

```
>>> int(True)
1
>>> int('0')
0
```


1.3.4 Boolean Variables

Okay, so we already know what Boolean Algebra is, and Python can already do everything we need, right?
Just like in high school algebra, things start to get interesting when we introduce a few variables.
A Boolean variable is an abstract numerical quantity that may assume any value in the set $B=\{0,1\}$.
For example, if we flip a coin, the result will either be "heads" or "tails". Let's say we assign tails the value 0 , and heads the value 1 . Now divide all of time into two periods: 1) before the flip, and 2) after the flip.

Before you flip the coin, imagine the possibility of either "tails" (0) or "heads" (1). The abstract concept in your mind about a coin that may land in one of two ways is the variable. Normally, we will give the abstract quantity a name to distinguish it from other abstract quantities we might be simultaneously considering. The most familiar name for an arbitrary algebraic variable is x.

After you flip the coin, you can see the result in front of you. The coin flip is no longer an imaginary variable; it is a known constant.

Creating Variable Instances

Let's create a few Boolean expression variables using the exprvar method:

```
>>> a, b, c, d = map(exprvar, ' abocd')
>>> a.name
a
>>> b. name
b
```

By default, all variables go into a global namespace. Also, all variable instances are singletons. That is, only one variable is allowed to exist per name. Verify this fact with the following:

```
>>> a = exprvar('a')
>>> _a = exprvar(' a')
>>> id(a) == id(_a)
True
```

Warning: We recommend that you never do something crazy like assigning a and _ a to the same variable instance.

Indexing Variables

"There are only two hard things in Computer Science: cache invalidation and naming things."
—Tim Bray
Consider the coin-flipping example from before. But this time, instead of flipping one coin, we want to flip a hundred coins. You could start naming your variables by assigning the first flip to x, followed by y, and so on. But there are only twenty-six letters in the English alphabet, so unless we start resorting to other alphabets, we will hit some limitations with this system very quickly.

For cases like these, it is convenient to give variables an index. Then, you can name the variable for the first coin flip $x[0]$, followed by $x[1], x[2]$, and so on.

Here is how to give variables indices using the exprvar function:

```
>>> x_0 = exprvar(' x', 0)
>>> x_1 = exprvar(' x', 1)
>>> x_0, x_1
(x[0], x[1])
```

You can even give variables multiple indices by using a tuple:

```
>>> x_0_1_2_3 = exprvar('x', (0, 1, 2 , 3))
>>> x_0_1_2_3
x[0,1,2,3]
```

Assigning individual variables names like this is a bit cumbersome. It is much easier to just use the exprvars factory function:

```
>>> X = exprvars(' X', 8)
>>> X
[x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]]
>>> X[3]
x[3]
>>> X[2:5]
[x[2], x[3], x[4]]
>> X[:5]
[x[0], x[1], x[2], x[3], x[4]]
>>> X[5:]
[x[5], x[6], x[7]]
>>> X[-1]
x[7]
```

Similary for multi-dimensional bit vectors:

```
>>> X = exprvars('x', 4, 4)
>>> X
farray([[x[0,0], x[0,1], x[0,2], x[0,3]],
    [x[1,0], x[1,1], x[1,2], x[1,3]],
```

```
    [x[2,0], x[2,1], x[2,2], x[2,3]],
    [x[3,0], x[3,1], x[3,2], x[3,3]]])
>>> X[2]
farray([x[2,0], x[2,1], x[2,2], x[2,3]])
>>> X[2,2]
x[2,2]
>>> X[1:3]
farray([[x[1,0], x[1,1], x[1,2], x[1,3]],
    [x[2,0],x[2,1],x[2,2], x[2,3]]])
>>> x[1:3,2]
farray([x[1,2], x[2,2]])
>>> X[2,1:3]
farray([x[2,1], x[2,2]])
>>> X[-1,-1]
x[3,3]
```


1.3.5 Points in Boolean Space

Before we talk about Boolean functions, it will be useful to discuss the nature of Boolean space.
In high school algebra, you started with functions that looked like $f(x)=2 x+3$. Later, you probably investigated slightly more interesting functions such as $f(x)=x^{2}, f(x)=\sin (x)$, and $f(x)=e^{x}$. All of these are functions of a single variable. That is, the domain of these functions is the set of all values the variable x can take. In all these cases, that domain is $[-\infty,+\infty]$.
Remember that variables in Boolean algebra can only take values of 0 or 1 . So to create interesting functions in Boolean algebra, you use many variables.

Let's revisit the coin-flipping example again. This time we will flip the coin exactly twice. Create a variable x to represent the result of the first flip, and a variable y to represent the result of the second flip. Use zero (0) to represent "tails", and one (1) to represent "heads".

The number of variables you use is called the dimension. All the possible outcomes of this experiment is called the space. Each possible outcome is called a point.
If you flip the coin twice, and the result is (heads, tails), that result is point $(1,0)$ in a 2-dimensional Boolean space.
Use the iter_points generator to iterate through all possible points in an N -dimensional Boolean space:

```
>>> list(iter_points([x, y]))
[{x: 0, y: 0}, {x: 1, y: 0}, {x: 0, y: 1}, {x: 1, y: 1}]
```

PyEDA uses a dictionary to represent a point. The keys of the dictionary are the variable instances, and the values are numbers in 0,1 .

Try doing the experiment with three coin flips. Use the variable z to represent the result of the third flip.

```
>>> list(iter_points([z, y, x]))
[{x: 0, y: 0, z: 0},
    {x: 0, y: 0, z: 1},
    {x:0, y: 1, z: 0},
    {x: 0, y: 1, z: 1},
    {x: 1, y: 0, z: 0},
    {x: 1, y: 0, z: 1},
    {x: 1, y: 1, z: 0},
    {x: 1, y: 1, z: 1}]
```

The observant reader will notice that this is equivalent to:

- generating all bit-strings of length N
- counting from 0 to 7 in the binary number system

1.3.6 Boolean Functions

A Boolean function is a rule that maps points in an N-dimensional Boolean space to an element in $\{0,1\}$. In formal mathematical lingo, $f: B^{N} \Rightarrow B$, where B^{N} means the Cartesian product of N sets of type $\{0,1\}$. For example, if you have three input variables, a, b, c, each defined on $\{0,1\}$, then $B^{3}=\{0,1\}^{3}=$ $\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\} . B^{3}$ is the domain of the function (the input part), and $B=\{0,1\}$ is the range of the function (the output part).
In the relevant literature, you might see a Boolean function described as a type of relation, or geometrically as a cube. These are valid descriptions, but we will use a familiar analogy for better understanding.

A Boolean function is somewhat like a game, where the player takes N binary input turns (eg heads/tails), and there is a binary result determined by a rule (eg win/loss). Let's revisit the coin-flipping example. One possible game is that we will flip the coin three times, and it will be considered a "win" if heads comes up all three.

Summarize the game using a truth table.

x_{0}	x_{1}	x_{2}	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

You can create the equivalent truth table with PyEDA like so:

```
>>> X = exprvars('x', 3)
>>> f = truthtable(X, "00000001")
>>> f
x[2] x[1] x[0]
    0 0 0 : 0
    0 0 1:0
    0 1 0 : 0
    0 1 1 : 0
    1 0 0 : 0
    1 0}1:
    1 1 0 : 0
    1 1 1 : 1
```

Don't be alarmed that the inputs are displayed most-significant-bit first. That can actually come in handy sometimes.
The game from the previous example can be expressed as the expression $f\left(x_{0}, x_{1}, x_{2}\right)=x_{0} \cdot x_{1} \cdot x_{2}$. It is generally not convenient to list all the input variables, so we will normally shorten that statement to just $f=x_{0} \cdot x_{1} \cdot x_{2}$.

```
>>> truthtable2expr(f)
And(x[0], x[1], x[2])
```

Let's define another game with a slightly more interesting rule: "you win if the majority of flips come up heads".

x_{0}	x_{1}	x_{2}	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

This is a three-variable form of the "majority" function. You can express it as a truth table:

```
>>> f = truthtable(X, "00010111")
>>> f
x[2] x[1] x[0]
    0 0 0:0
    0 0 1 : 0
    0 1 0 : 0
    0 1 1 : 1
    1 0 0 : 0
    1 0 1 : 1
    1 1 0 : 1
    1 1 1 : 1
```

or as an expression:

```
>>> truthtable2expr(f)
Or(And(~x[0], x[1], x[2]), And(x[0], ~x[1], x[2]), And(x[0], x[1], ~x[2]), And(x[0], x[1], x[2]))
```


1.3.7 PyEDA Variable/Function Base Classes

Now that we have a better understanding of Boolean variables and functions, we will dive into how PyEDA models them.

We have already seen a glance of the type of data structure used to represent Boolean functions (tables and expressions). There are actually several of these representations, including (but not limited to):

- Truth tables
- Implicant tables
- Logic expressions
- Decision diagrams, including:
- Binary decision diagrams (BDD)
- Reduced, ordered binary decisions diagrams (ROBDD)
- Zero-suppressed decision diagrams (ZDD)
- And inverter graphs (AIG)

Each data type has strengths and weaknesses. For example, ROBDDs are a canonical form, which make proofs of formal equivalence very cheap. On the other hand, ROBDDs can be exponential in size in many cases, which makes them memory-constrained.

The following sections show the abstract base classes for Boolean variables and functions defined in pyeda.boolalg.boolfunc.

Boolean Variables

In order to easily support algebraic operations on Boolean functions, each function representation has a corresponding variable representation. For example, truth table variables are instances of TruthTableVariable, and expression variables are instances of ExpressionVariable, both of which inherit from Variable.
class pyeda.boolalg.boolfunc. Variable (names, indices)
Base class for a symbolic Boolean variable.
A Boolean variable is an abstract numerical quantity that may assume any value in the set $B=\{0,1\}$.

```
Note: Do NOT instantiate a variable directly. Instead, use one of the concrete im-
plementations: pyeda.boolalg.bdd.bddvar() pyeda.boolalg.expr.exprvar(),
pyeda.boolalg.table.ttvar().
```

A variable is defined by one or more names, and zero or more indices. Multiple names establish hierarchical namespaces, and multiple indices group several related variables.

Each variable has a unique, positive integer called the uniqid. This integer may be used to identify a variable that is represented by more than one data structure. For example, bddvar ('a', 0) and exprvar ('a', 0) will refer to two different Variable instances, but both will share the same uniqid.

All variables are implicitly ordered. If two variable names are identical, compare their indices. Otherwise, do a string comparison of their names. This is only useful where variable order matters, and is not meaningful in any algebraic sense.

For example, the following statements are true:

```
-a == a
    -a}< 
    \bulleta[0] < a[1]
    -a[0][1] < a[0][2]
```

name

Return the innermost variable name.

qualname

Return the fully qualified name.

Boolean Functions

This is the abstract base class for Boolean function representations.
In addition to the methods and properties listed below, classes inheriting from Function should also overload the __invert__, __or__, __and__, and __xor__ magic methods. This makes it possible to perform symbolic, algebraic manipulations using a Python interpreter.
class pyeda.boolalg.boolfunc.Function
Abstract base class that defines an interface for a symbolic Boolean function of N variables.
support
Return the support set of a function.
Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a Boolean function of N variables.
The unordered set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is called the support of the function.

usupport

Return the untyped support set of a function.

inputs

Return the support set in name/index order.

top

Return the first variable in the ordered support set.

degree

Return the degree of a function.
A function from $B^{N} \Rightarrow B$ is called a Boolean function of degree N.

cardinality

Return the cardinality of the relation $B^{N} \Rightarrow B$.
Always equal to 2^{N}.
iter_domain()
Iterate through all points in the domain.
iter_image()
Iterate through all elements in the image.
iter_relation ()
Iterate through all (point, element) pairs in the relation.
restrict (point)
Restrict a subset of support variables to $\{0,1\}$.
Returns a new function: $f\left(x_{i}, \ldots\right)$
$f \mid x_{i}=b$
vrestrict (vpoint)
Expand all vectors in vpoint before applying restrict.

compose (mapping)

Substitute a subset of support variables with other Boolean functions.
Returns a new function: $f\left(g_{i}, \ldots\right)$
$f_{1} \mid x_{i}=f_{2}$
satisfy_one()
If this function is satisfiable, return a satisfying input point. A tautology may return a zero-dimensional point; a contradiction must return None.

```
satisfy_all()
```

Iterate through all satisfying input points.

satisfy_count()

Return the cardinality of the set of all satisfying input points.
iter_cofactors ($v s=$ None)
Iterate through the cofactors of a function over N variables.
The vs argument is a sequence of N Boolean variables.
The cofactor of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable x_{i} is: $f_{x_{i}}=f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$
The cofactor of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable x_{i}^{\prime} is: $f_{x_{i}^{\prime}}=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right)$
cofactors ($v s=$ None)
Return a tuple of the cofactors of a function over N variables.
The vs argument is a sequence of N Boolean variables.

The cofactor of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable x_{i} is: $f_{x_{i}}=f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$
The cofactor of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable x_{i}^{\prime} is: $f_{x_{i}^{\prime}}=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right)$
smoothing ($v s=$ None)
Return the smoothing of a function over a sequence of N variables.
The vs argument is a sequence of N Boolean variables.
The smoothing of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable x_{i} is: $S_{x_{i}}(f)=f_{x_{i}}+f_{x_{i}^{\prime}}$
This is the same as the existential quantification operator: $\exists\left\{x_{1}, x_{2}, \ldots\right\} f$
consensus ($v s=$ None)
Return the consensus of a function over a sequence of N variables.
The $v s$ argument is a sequence of N Boolean variables.
The consensus of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable x_{i} is: $C_{x_{i}}(f)=f_{x_{i}} \cdot f_{x_{i}^{\prime}}$
This is the same as the universal quantification operator: $\forall\left\{x_{1}, x_{2}, \ldots\right\} f$
derivative ($v s=$ None)
Return the derivative of a function over a sequence of N variables.
The $v s$ argument is a sequence of N Boolean variables.
The derivative of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable x_{i} is: $\frac{\partial}{\partial x_{i}} f=f_{x_{i}} \oplus f_{x_{i}^{\prime}}$
This is also known as the Boolean difference.
is_zero()
Return whether this function is zero.
Note: This method will only look for a particular "zero form", and will NOT do a full search for a contradiction.

is_one()

Return whether this function is one.
Note: This method will only look for a particular "one form", and will NOT do a full search for a tautology.

static box (obj)

Convert primitive types to a Function.
unbox ()
Return integer 0 or 1 if possible, otherwise return the Function.

1.4 Binary Decision Diagrams

A binary decision diagram is a directed acyclic graph used to represent a Boolean function. They were originally introduced by Lee ${ }^{3}$, and later by Akers ${ }^{4}$. In 1986, Randal Bryant introduced the reduced, ordered BDD (ROBDD) ${ }^{5}$.

[^1]The ROBDD is a canonical form, which means that given an identical ordering of input variables, equivalent Boolean functions will always reduce to the same ROBDD. This is a very desirable property for determining formal equivalence. Also, it means that unsatisfiable functions will be reduced to zero, making SAT/UNSAT calculations trivial. Due to these auspicious properties, the term BDD almost always refers to some minor variation of the ROBDD devised by Bryant.
In this chapter, we will discuss how to construct and visualize ROBDDs using PyEDA.
The code examples in this chapter assume that you have already prepared your terminal by importing all interactive symbols from PyEDA:

```
>>> from pyeda.inter import *
```


1.4.1 Constructing BDDs

There are two ways to construct a BDD:

1. Convert an expression

2. Use operators on existing BDDs

Convert an Expression

Since the Boolean expression is PyEDA's central data type, you can use the expr2bdd function to convert arbitrary expressions to BDDs:

```
>>> f = expr("a & b | a & c | b & c")
>>> f
Or(And(a, b), And(a, c), And(b, c))
>>> f = expr2bdd(f)
>>> f
<pyeda.boolalg.bdd.BinaryDecisionDiagram at 0x7f556874ed68>
```

As you can see, the BDD does not have such a useful string representation. More on this subject later.

Using Operators

Just like expressions, BDDs have their own Variable implementation. You can use the bddvar function to construct them:

```
>>> a, b, c = map(bddvar, 'abc')
>>> type(a)
pyeda.boolalg.bdd.BDDVariable
>>> isinstance(a, BinaryDecisionDiagram)
True
```

Creating indexed variables with namespaces always works just like expressions:

```
>>> a0 = bddvar(' a', 0)
>>> a0
a [0]
>>> b_a_0_1 = bddvar(('a', 'b'), (0, 1))
b.a[0,1]
```

Also, the bddvars function can be used to create multi-dimensional arrays of indexed variables:

```
>>> X = bddvars(' X', 4, 4)
>>> X
farray([[x[0,0], x[0,1], x[0,2], x[0,3]],
    [x[1,0], x[1,1], x[1,2], x[1,3]],
    [x[2,0], x[2,1], x[2,2], x[2,3]],
    [x[3,0], x[3,1], x[3,2], x[3,3]]])
```

From variables, you can use Python's $\sim \mid \& \wedge$ operators to construct arbitrarily large BDDs.
Here is the simple majority function again:

```
>>> f = a & b | a & c | b & c
>>> f
<pyeda.boolalg.bdd.BinaryDecisionDiagram at 0x7f556874ed68>
```

This time, we can see the benefit of having variables available:

```
>>> f.restrict({a: 0})
<pyeda.boolalg.bdd.BinaryDecisionDiagram at 0x7f556874eb38>
>>> f.restrict({a: 1, b: 0})
C
>>> f.restrict({a: 1, b: 1})
1
```


1.4.2 BDD Visualization with IPython and GraphViz

If you have GraphViz installed on your machine, and the dot executable is available on your shell's path, you can use the gvmagic IPython extension to visualize BDDs.

```
In [1]: %install_ext https://raw.github.com/cjdrake/ipython-magic/master/gvmagic.py
In [2]: %load_ext gvmagic
```

For example, here is the majority function in three variables as a BDD:

```
In [3]: a, b, c = map(bddvar, 'abc')
In [4]: f = a & b | a & c | b & c
In [5]: %dotobj f
```

The way this works is that the \%dotobj extension internally calls the to_dot method on f :

```
In [6]: f.to_dot()
'graph BDD {
    n139865543613912 [label=0, shape=box];
    n139865543728208 [label=1, shape=box];
    n139865543169752 [label="c", shape=circle];
    n139865552542296 [label="b",shape=circle];
    n139865543169864 [label="b", shape=circle];
    n139865543170312 [label="a", shape=circle];
    n139865543169752 -- n139865543613912 [label=0, style=dashed];
    n139865543169752 -- n139865543728208 [label=1];
    n139865552542296 -- n139865543613912 [label=0, style=dashed];
    n139865552542296 -- n139865543169752 [label=1];
    n139865543169864 -- n139865543169752 [label=0, style=dashed];
    n139865543169864 -- n139865543728208 [label=1];
    n139865543170312 -- n139865552542296 [label=0, style=dashed];
    n139865543170312 -- n139865543169864 [label=1]; }'
```


Figure 1.1: BDD of Three-Input Majority Function

1.4.3 Satisfiability

Like we mentioned in the introduction, BDDs are a canonical form. That means that all unsatisfiable functions will reduce to zero, and all tautologies will reduce to one. If you simply want to check whether a function is SAT or UNSAT, just construct a BDD, and test whether it is zero/one.

```
>>> a, b = map(bddvar, 'ab')
>>> f = ~a & ~b | ~a & b | a & ~b | a & b
>>> f
1
>>> f.is_one()
True
>>> g=(~a | ~b) & (~a | b) & (a | ~b) & (a | b)
>>> g
0
>>> g.is_zero()
True
```

If you need one or more satisfying input points, use the satisfy_one and satisfy_all functions. The algorithm that implements SAT is very simple and elegant; it just finds a path from the function's root node to one.

```
>>> a, b, c = map(bddvar, 'abc')
>>> f = a ^ b ^ c
>>> f.satisfy_one()
{b: 0, a: 0, c: 1}
>>> list(f.satisfy_all())
[{a: 0, b: 0, c: 1},
    {a: 0, b: 1, c: 0},
    {a: 1, b: 0, c: 0},
    {a: 1, b: 1, c: 1}]
```

Trace all that paths from the top node to 1 to verify.

1.4.4 Formal Equivalence

Because BDDs are a canonical form, functional equivalence is trivial.
Here is an example where we define the XOR function by using 1) the XOR operator, and 2) OR/AND/NOT operators.

```
>>> a, b, c = map(bddvar, 'abc')
>>> f1 = a ^ b ^ c
>>> f2 = a & ~b & ~c | ~a & b & ~c | ~a & ~b & c | a & b & c
```

Just like expressions, BDDs have an equivalent method:

```
>>> f1.equivalent(f2)
True
```

However, this isn't required. PyEDA maintains a unique table of BDD nodes and their function pointers, so you can just test for equality using the Python is operator:

```
>>> f1 is f2
True
```


1.4.5 Variable Ordering

The size of a BDD is very sensitive to the order of variable decomposition. For example, here is a BDD that uses an ideal variable order:

Figure 1.2: BDD of Three-Input XOR Function

```
In [1]: X = boddvars('x', 8)
In [2]: f1 = X[0] & X[1] | X[2] & X[3] | X[4] & X[5]
In [3]: %dotobj f1
```

And here is the same function, with a bad variable order:

```
In [2]: f2 = X[0] & X[3] | X[1] & X[4] | X[2] & X[5]
In [3]: %dotobj f2
```

The previous example was used by Bryant ${ }^{3}$ to demonstrate this concept. When you think of the definition of a BDD, it becomes clear why some orderings are superior to others. What you want in a variable ordering is to decide as much of the function at every decision level as you traverse towards 0 and 1.

PyEDA implicitly orders all variables. It is therefore not possible to create a new BDD by reordering its inputs. You can, however, rename the variables using the compose method to achieve the desired result.
For example, to optimize the previous BDD:

```
In [4]: g2 = f2.compose({X[0]: Y[0], X[1]: Y[2], X[2]: Y[4],
    X[3]: Y[1], X[4]: Y[3], X[5]: Y[5]})
In [5]: %dotobj g2
```


1.4.6 Garbage Collection

Since BDDs are a memory-constrained data structure, the subject of garbage collection is very important.
PyEDA uses the Python standard library's weakref module to automatically garbage collect BDD nodes when they are no longer needed. The BDD function contains a reference to a node, which contains references to it's children, and so on until you get to zero/one. When a function's name is either deleted or it goes out of scope, it may initiate a corresponding cascade of node deletions.
This is best illustrated with an example. If you look directly into the pyeda.boolalg.bdd module, you can find the memory structure that holds BDD nodes:

```
>>> from pyeda.boolalg.bdd import _NODES
>>> len(_NODES)
2
```

The table contains two static nodes: zero and one. Let's define a few variables:

```
>>> from pyeda.inter import *
>>> a, b = map(bddvar, ' ab')
>>> len(_NODES)
4
```

Now define three simple BDDs:

```
>>> f1 = a | b
>>> len(_NODES)
5
>>> f2 = a & b
>>> len(_NODES)
6
>>> f3 = a^b
```



```
>>> len(_NODES)
8
```

Now there are eight nodes. Let's count the remaining nodes as we delete functions:

```
>>> del f1
>>> len(_NODES)
7
>>> del f2
>>> len(_NODES)
6
>>> del f3
>>> len(_NODES)
4
```


1.4.7 References

1.5 Boolean Expressions

Expressions are a very powerful and flexible way to represent Boolean functions. They are the central data type of PyEDA's symbolic Boolean algebra engine. This chapter will explain how to construct and manipulate Boolean expressions.
The code examples in this chapter assume that you have already prepared your terminal by importing all interactive symbols from PyEDA:

```
>>> from pyeda.inter import *
```


1.5.1 Expression Constants

You can represent 0 and 1 as expressions:

```
>>> zero = expr(0)
>>> one = expr(1)
```

We will describe the expr function in more detail later. For now, let's just focus on the representation of constant values.

All of the following conversions from 0 have the same effect:

```
>>> zeroA = expr(0)
>>> zeroB = expr(False)
>>> zeroC = expr("O")
```

All three "zero" objects are the same:

```
>>> zeroA == zeroB == zeroC
True
```

Similarly for 1 :

```
>>> oneA = expr(1)
>>> oneB = expr(True)
>>> oneC = expr("1")
```

All three "one" objects are the same:

```
>>> oneA == oneB == oneC
```

True

However, these results might come as a surprise:

```
>>> expr(0)== 0
False
>>> expr(1) == True
False
```

PyEDA evaluates all zero-like and one-like objects, and stores them internally using a module-level singleton in pyeda.boolalg.expr:

```
>>> type(expr(0))
```

pyeda.boolalg.expr._ExprZero
>>> type(expr(1))
pyeda.boolalg.expr._ExprOne

Once you have converted zero/one to expressions, they implement the full Boolean Function API.
For example, constants have an empty support set:

```
>>> one.support
frozenset()
```

Also, apparently zero is not satisfiable:

```
>>> zero.satisfy_one() is None
True
```

This fact might seem underwhelming, but it can have some neat applications. For example, here is a sneak peak of Shannon expansions:

```
>>> a, b = map(exprvar, 'ab')
>>> zero.expand([a, b], conj=True)
And(Or(a, b), Or(a, ~b), Or(~a, b), Or (~a, ~b))
>>> one.expand([a, b])
Or(And(~a, ~b), And(~a, b), And(a, ~b), And(a, b))
```


1.5.2 Expression Literals

A Boolean literal is defined as a variable or its complement. The expression variable and complement data types are the primitives of Boolean expressions.

Variables

To create expression variables, use the exprvar function.
For example, let's create a variable named a, and assign it to a Python object named a:

```
>>> a = exprvar(' a')
>>> type(a)
pyeda.boolalg.expr.ExprVariable
```

One efficient method for creating multiple variables is to use Python's builtin map function:

```
>>> a, b, c = map(exprvar, ' abc')
```

The primary benefit of using the exprvar function rather than a class constructor is to ensure that variable instances are unique:

```
>>> a = exprvar('a')
>>> a_new = exprvar('a')
>>> id(a) == id(a_new)
True
```

You can name a variable pretty much anything you want, though we recommend standard identifiers:

```
>>> foo = exprvar('foo')
>>> holy_hand_grenade = exprvar('holy_hand_grenade')
```

By default, all variables go into a global namespace. You can assign a variable to a specific namespace by passing a tuple of strings as the first argument:

```
>>> a = exprvar('a')
>>> c_b__a = exprvar(('a', 'b', 'c'))
>>> a.names
('a', )
>>> c_b__a.names
('a', 'b', 'c')
```

Notice that the default representation of a variable will dot all the names together starting with the most significant index of the tuple on the left:

```
>>> str(c_b_a)
'c.b.a'
```

Since it is very common to deal with grouped variables, you may assign indices to variables as well. Each index is a new dimension.

To create a variable with a single index, use an integer argument:

```
>>> a42 = exprvar('a', 42)
>>> str(a42)
a [42]
```

To create a variable with multiple indices, use a tuple argument:

```
>>> a_1_2_3 = exprvar('a', (1, 2, 3))
>>> str(a_1_2_3)
a[1,2,3]
```

Finally, you can combine multiple namespaces and dimensions:

```
>>> c_b_a_1_2_3 = exprvar(('a', 'b', 'c'), (1, 2, 3))
>>> str(c_b_a_1_2_3)
c.b.a[1, 2, 3]
```

Note: The previous syntax is starting to get a bit cumbersome. For a more powerful method of creating multidimensional arrays, use the exprvars function.

Complements

A complement is defined as the inverse of a variable. That is:

$$
\begin{gathered}
a+a^{\prime}=1 \\
a \cdot a^{\prime}=0
\end{gathered}
$$

One way to create a complement from a pre-existing variable is to simply apply Python's \sim unary negate operator.
For example, let's create a variable and its complement:

```
>>> a = exprvar(' a')
>>> ~a
~a
>>> type(~a)
pyeda.boolalg.expr.ExprComplement
```

All complements created from the same variable instance are not just identical, they all refer to the same object:

```
>>> id(~a) == id(~a)
```

True

1.5.3 Constructing Expressions

Expressions are defined recursively as being composed of primitives (constants, variables), and expressions joined by Boolean operators.

Now that we are familiar with all of PyEDA's Boolean primitives, we will learn how to construct more interesting expressions.

From Constants, Variables, and Python Operators

PyEDA overloads Python's $\sim, ~ ।, ~ \wedge$, and \& operators with NOT, OR, XOR, and AND, respectively.
Let's jump in by creating a full adder:

```
>>> a, b, ci = map(exprvar, "a b ci".split())
>>> s = ~a & ~b & ci | ~a & b & ~ci | a & ~b & ~ci | a & b & ci
>>> co = a & b | a & ci | b & ci
```

Using XOR looks a lot nicer for the sum output:

```
>>> s = a ^ b ^ ci
```

You can use the expr2truthtable function to do a quick check that the sum logic is correct:

```
>>> expr2truthtable(s)
ci b a
    0 0 0 : 0
    0 0 1 : 1
    0 1 0 : 1
    0 1 1 : 0
    1 0 0 : 1
    1 0 1 : 0
    1 1 0 : 0
    1 1 1 : 1
```

Similarly for the carry out logic:

```
>>> expr2truthtable(co)
ci b a
    0 0 0 : 0
    0}001:
    0 1 0 : 0
    0 1 1 : 1
    10 0 : 0
```

```
1 0 1 : 1
1 1 0 : 1
1 1 1 : 1
```


From Factory Functions

Python does not have enough builtin operators to handle all interesting Boolean functions we can represent directly as an expression. Also, binary operators are limited to two operands at a time, whereas several Boolean operators are N -ary (arbitrary many operands). This section will describe all the factory functions that can be used to create arbitrary Boolean expressions.

The general form of these functions is $O P(x[, x]$, simplify=True). The function is an operator name, followed by one or more arguments, followed by the simplify parameter. Some functions also have a conj parameter, which selects between conjunctive ($\mathrm{conj}=$ True) and disjunctive ($\mathrm{conj}=\mathrm{False}$) formats.

One advantage of using these functions is that you do not need to create variable instances prior to passing them as arguments. You can just pass string identifiers, and PyEDA will automatically parse and convert them to variables.

For example, the following two statements are equivalent:

```
>>> Not('a[0]')
~a[0]
```

and:

```
>>> a0 = exprvar('a', 0)
>>> Not(a0)
~a[0]
```


Primary Operators

Since NOT, OR, and AND form a complete basis for a Boolean algebra, these three operators are primary.

```
Not ( }x\mathrm{ , simplify=True)
```

Return an expression that is the inverse of the input.
Or $(* x s$, simplify=True)
Return an expression that evaluates to 1 if and only if any inputs are 1.

```
And (*xs, simplify=True)
```

Return an expression that evaluates to 1 if and only if all inputs are 1.
Example of full adder logic using Not, Or, and And:

```
>>> s = Or(And(Not('a'), Not('b'), 'ci'), And(Not('a'), 'b', Not('ci')), And('a', Not('k)'), Not('ci'
>>> co = Or(And('a', 'b'), And('a', 'Ci'), And('b',' 'Ci'))
```


Secondary Operators

A secondary operator is a Boolean operator that can be natively represented as a PyEDA expression, but contains more information than the primary operators. That is, these expressions always increase in tree size when converted to primary operators.

Xor $(* x s$, simplify=True)
Return an expression that evaluates to 1 if and only if the input parity is odd.

The word parity in this context refers to whether the number of ones in the input is even (divisible by two). For example, the input string " 0101 " has even parity (2 ones), and the input string " 0001 " has odd parity (1 ones).

The full adder circuit has a more dense representation when you use the Xor operator:

```
>>> s = Xor('a', 'b', 'ci')
>>> co = Or(And('a', 'b'), And('a', 'ci'), And('b', 'ci'))
Equal (*xs, simplify=True)
```

Return an expression that evaluates to 1 if and only if all inputs are equivalent.

Implies (p, q, simplify=True)

Return an expression that implements Boolean implication $(p \Longrightarrow q)$.

p	q	$p \Longrightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Note that this truth table is equivalent to $p \leq q$, but Boolean implication is by far the more common form due to its use in propositional logic.

ITE ($s, d 1, d 0$, simplify=True)

Return an expression that implements the Boolean "if, then, else" operator. If $s=1$, then the output equals d_{0}. Otherwise $(s=0)$, the output equals d_{1}.

s	d_{1}	d_{0}	ite $\left(s, d_{1}, d_{0}\right)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

High Order Operators

A high order operator is a Boolean operator that can NOT be natively represented as a PyEDA expression. That is, these factory functions will always return expressions composed from primary and/or secondary operators.
Nor ($* x s$, simplify=True)
Return an expression that evaluates to 0 if and only if any inputs are 1 . The inverse of $O r$.
Nand ($* x s$, simplify $=$ True)
Return an expression that evaluates to 0 if an only if all inputs are 1 . The inverse of And.
Xnor (${ }^{*} x s$, simplify=True)
Return an expression that evaluates to 1 if and only if the input parity is even.

Unequal ($* x s$, simplify=True)

Return an expression that evaluates to 1 if and only if not all inputs are equivalent.

OneHot0 (*xs, simplify=True, conj=True)

Return an expression that evaluates to 1 if and only if the number of inputs equal to 1 is at most 1 . That is, return true when at most one input is "hot".

OneHot ($* x s$, simplify=True, conj=True)
Return an expression that evaluates to 1 if and only if exactly one input is equal to 1 . That is, return true when exactly one input is "hot".
Majority (*xs, simplify=True, conj=False)
Return an expression that evaluates to 1 if and only if the majority of inputs equal 1.
The full adder circuit has a much more dense representation when you use both the Xor and Ma jority operators:

```
>>> s = Xor('a', 'b', 'ci')
>>> co = Majority('a', 'b', 'ci')
```

AchillesHeel (${ }^{*} x s$, simplify=True)
Return the Achille's Heel function, defined as $\prod_{i=0}^{N-1}\left(x_{i / 2}+x_{i / 2+1}\right)$.
The AchillesHeel function has N literals in its CNF form, but $N / 2 \times 2^{N / 2}$ literals in its DNF form. It is an interesting demonstration of tradeoffs when choosing an expression representation. For example:

```
>>> f = AchillesHeel('a', 'b', 'c', 'd', ' w', ' x', 'Y', ' z')
>>> f
And(Or(a, b), Or(c, d), Or(w, x), Or(y, z))
>>> f.to_dnf()
Or(And(a, c, w, y), And (a, c, w, z), And(a, c, x, y), And(a, c, x, z), And(a, d, w, y), And(a, d, w,
```

Mux (f s, sel, simplify=True)
Return an expression that multiplexes a sequence of input functions over a sequence of select functions.
For example:

```
>>> X = exprvars(' X', 4)
>>> S = exprvars('S', 2)
>>> Mux(X, S)
Or(And(~s[0], ~s[1], x[0]), And(s[0], ~s[1], x[1]), And(~s[0], s[1], x[2]), And(s[0], sl1], x[3]))
```


From the expr Function

```
expr (obj, simplify=True)
```

The expr function is very special. It will attempt to convert the input argument to an Expression object.
We have already seen how the expr function converts a Python bool input to a constant expression:

```
>>> expr(False)
0
```

Now let's pass a str as the input argument:

```
>>> expr('0')
0
```

If given an input string, the expr function will attempt to parse the input string and return an expression.
Examples of input expressions:

```
>>> expr("~a & b | ~c & d")
Or(And(~a, b), And(~c, d))
>>> expr("a | b ^ c & d")
Or(a, Xor(b, And(c, d)))
>>> expr("p => q")
Implies(p, q)
>>> expr("p <=> q")
```

```
Equal(p, q)
>>> expr("s ? d[1] : d[0]")
ITE(s, d[1], d[0])
>>> expr("Or(a, b, Not(c))")
Or(a, b, ~c)
>>> expr("Majority(a, b, c)")
Or(And(a, b), And (a, c), And (b, c))
```

Operator Precedence Table (lowest to highest):

Operator	Description
s ? d1 : d0	If Then Else
=> <=>	Binary Implies, Binary Equal
\|	Binary OR
\wedge	Binary XOR
\&	Binary AND
$\sim \mathrm{x}$	Unary NOT
(expr ...) OP (expr ...)	Parenthesis, Explicit operators

The full list of valid operators accepted by the expression parser:

- Or (....)
- And (....)
- Xor (...)
- Xnor (...)
- Equal (...)
- Unequal (. . .)
- Nor (...)
- Nand (. . .)
- OneHot 0 (...)
- OneHot (...)
- Majority(...)
- AchillesHeel (...)
- ITE (s, d1, d0)
- Implies(p, q)
- Not(a)

1.5.4 Expression Types

This section will cover the hierarchy of Boolean expression types.

Unsimplified

An unsimplified expression consists of the following components:

- Constants
- Expressions that can easily be converted to constants (eg $x+x^{\prime}=1$)
- Literals
- Primary operators: Not, Or, And
- Secondary operators

Also, an unsimplified expression does not automatically join adjacent, associative operators. For example, $a+(b+c)$ is equivalent to $a+b+c$. The depth of the unsimplified expression is two:

```
>>> f = Or('a', Or('b', 'c'), simplify=False)
>>> f.xs
(a, Or(b, c))
>>> f.depth
2
```

The depth of the simplified expression is one:

```
>>> g = f.simplify()
>>> g.xs
(b, a, c)
>>> g.depth
1
```

If the simplify=False usage is too verbose, you can use the Expression subclasses directly to create unsimplified expressions:

```
>>> ExprAnd(a, ~a)
And(~a, a)
>>> ExprOr(a, ExprOr(b, c))
Or(a, Or(b, c))
```

Notice that there are no unsimplified representations for:

- negated literals
- double negation

For example:

```
>>> ExprNot(a)
~a
>>> ExprNot(ExprNot(ExprOr(a, b)))
Or(a, b)
```


Simplifed

A simplified expression consists of the following components:

- Literals
- Primary operators: Not, Or, And
- Secondary operators

Also, 0 and 1 are considered simplified by themselves.
That is, the act of simplifying an expression eliminates constants, and all sub-expressions that can be easily converted to constants.

All expressions constructed using overloaded operatiors are automatically simplified:

```
>>> a | 0
a
>>> a | 1
1
>> a | b & ~ b
a
```

Unsimplified expressions are not very useful, so the factory functions also simplify by default:

```
>>> Or(a, And(b, ~b))
a
```

To simplify an expression, use the simplify method:

```
>>> f = Or(a, 0, simplify=False)
>>> f
Or(0, a)
>>> g = f.simplify()
>>> g
a
```

You can check whether an expression is simplified using the simplified attribute:

```
>>> f.simplified
False
>>> g.simplified
True
```


Negation Normal Form

An expression in Negation Normal Form (NNF) consists of the following components:

- Literals
- Primary operators: Or, And

That is, convert all secondary operators to primary operators, and uses DeMorgan's transform to eliminate Not operators.

You can convert all secondary operators to NNF:

```
>>> Xor(a, b, c).to_nnf()
Or(And(~a, ~b, c), And(~a, b, ~c), And (a, ~b, ~c), And (a, b, c))
>>> Implies(p, q).to_nnf()
Or(~p, q)
>>> Equal(a, b, c).to_nnf()
Or(And(~a, ~b, ~c), And (a, b, c))
>>> ITE(s, a, b).to_nnf()
Or(And(b, Or(a, b, ~ci), Or(a, ~b, ci)), And(a, Or(And(~a, ~b, ci), And(~a, b, ~ci))))
```

Factoring also eliminates all Not operators, by using DeMorgan's law:

```
>>> Not(a | b).to_nnf()
And(~a, ~b)
>>> Not(a & b).to_nnf()
Or(~a, ~b)
```


Normal Form

A normal form expression is an NNF expression with depth less than or equal to two.
That is, a normal form expression is a flattened NNF.
There are two types of normal forms:

- disjunctive normal form (SOP: sum of products)
- conjunctive normal form (POS: product of sums)

The preferred method for creating normal form expressions is to use the $t o _d n f$ and $t o _c n f$ methods:

```
>>> f = Xor(a, Implies(b, c))
>>> f.to_dnf()
Or(And(~a, ~b), And(~a, c), And (a, b, ~c))
>>> f.to_cnf()
And(Or(~a, b), Or(~a, ~c), Or(a, ~b, c))
```


Canonical Normal Form

A canonical normal form expression is a normal form expression with the additional property that all terms in the expression have the same degree as the expression itself.
That is, a canonical normal form expression is a flattened, reduced NNF.
The preferred method for creating canonical normal form expressions is to use the $t o _c d n f$ and $t o _c c n f$ methods.
Using the same function from the previous section as an example:

```
>>> f = Xor(a, Implies(b, c))
>>> f.to_cdnf()
Or (And (~a, ~b, ~c), And(~a, ~b, c), And(~a, b, c), And (a, b, ~c))
>>> f.to_ccnf()
And(Or(a, ~b, c), Or(~a, b, c), Or (~a, b, ~c), Or (~a, ~b, ~c))
```


1.5.5 Depth

Expressions are a type of tree data structure. The depth of a tree is defined recursively:

1. A leaf node (constant or literal) has zero depth.
2. A branch node (operator) has depth equal to the maximum depth of its children (arguments) plus one.

You can think of the depth as the maximum number of operators between the expression's inputs to its output.
For example:

```
>>> a.depth
0
>>> (a & b).depth
1
>>> Xor(a, Implies(b, c)).depth
2
```


1.5.6 Satisfiability

Expressions have smart support for Boolean satisfiability.
They inherit both the satisfy_one and satisfy_all methods from the Function interface.
For example:

```
>>> f = Xor('a', Implies('b', 'c'))
>>> f.satisfy_one()
{a: 0, b: 0}
>>> list(f.satisfy_all())
[{a: 0, b: 0}, {a: 0, b: 1, c: 1}, {a: 1, b: 1, c: 0}]
```

By default, Boolean expressions use a very naive "backtracking" algorithm to solve for satisfying input points. Since SAT is an NP-complete algorithm, you should always use care when preparing your inputs.

A conjunctive normal form expression will automatically use the PicoSAT C extension. This is an industrial-strength SAT solver, and can be used to solve very non-trivial problems.

```
>>> g = f.to_cnf()
>>> g.satisfy_one()
{a: 0, b: 0, c: 1}
>>> list(g.satisfy_all())
[{a: 0, b: 1, c: 1},
    {a: 0, b: 0, c: 0},
    {a: 0, b: 0, c: 1},
    {a: 1, b: 1, c: 0}]
```

Note: Future versions of PyEDA might support additional C/C++ extensions for SAT solving. This is an active area of research, and no single solver is ideal for all cases.

Assumptions

A common pattern in SAT-solving is to setup a large database of clauses, and attempt to solve the CNF several times with different simplifying assumptions. This is equivalent to adding unit clauses to the database, which can be easily eliminated by boolean constraint propagation.

The Expression data type supports applying assumptions using the with statement. Here is an example of creating a nested context of literals that assumes $a=1$ and $b=0$:

```
>>> f = Xor(a, b, c)
>>> with a, ~b:
... print(f.satisfy_one())
{a: 1, b: 0, c: 0}
```

There are four satisfying solutions to this function, but the return value will always correspond to the input assumptions.
And terms of literals (clauses) may also be used as assumptions:

```
>>> with a & ~b:
... print(f.satisfy_one())
{a: 1, b: 0, c: 0}
```

Note that it is an error to assume conflicting values for a literal:

```
>>> with a, ~a:
... print(f.satisfy_one())
ValueError: conflicting constraints: a, ~a
```


PicoSAT Script

Starting with version 0.23 . 0 , PyEDA includes a script that implements some of the functionality of the PicoSAT command-line utility.

```
$ picosat -h
usage: picosat [-h] [--version] [-n] [-a LIT] [-v] [-i {0,1,2,3}] [-P LIMIT]
    [-l LIMIT] [--all]
    [file]
PicoSAT solver
positional arguments:
    file CNF input file (default: stdin)
optional arguments:
    -h, --help show this help message and exit
    --version print version and exit
```

Here is an example of a basic SAT problem encoded using the well-known DIMACS CNF format. See http://www.satcompetition.org/ for details on expected inputs and outputs. The function is a one-hot function on four input variables.

```
$ cat onehot4.cnf
c Comments start with a 'c' character
c The problem 'p' line is followed by clauses
p cnf 4 7
1 2 3 4 0
-4
-4
-4 -1 0
-3 -2 0
-3 -1 0
-2 -1 0
```

To get one satisfying solution:

```
$ picosat onehot4.cnf
s SATISFIABLE
v -1 - -2 -3 4
```

To get all satisfying solutions:

```
$ picosat --all onehot4.cnf
s SATISFIABLE
v -1 -2 -3 4 0
s SATISFIABLE
v -1 -2 3 -4 0
s SATISFIABLE
v -1 2 - -3 -4 0
s SATISFIABLE
v 1 -2 -3 -4 0
s SOLUTIONS 4
```

You can also constrain the solver with one or more assumptions:

```
$ picosat -a 1 -a -2 onehot4.cnf
s SATISFIABLE
v 1
```

```
$ picosat -a 1 -a 2 onehot4.cnf
s UNSATISFIABLE
```


1.5.7 Tseitin's Encoding

To take advantage of the PicoSAT solver, you need an expression that is in conjunctive normal form. Some expressions (especially Xor) have exponentially large size when you expand them to a CNF.

One way to work around this limitation is to use Tseitin's encoding. To convert an expression to Tseitin's encoding, use the tseitin method:

```
>>> f = Xor(' a', Implies(' b', ' C'))
>>> tf = f.tseitin()
>>> tf
And(Or(a, ~aux[0]), Or(~a, aux[0], ~b, c), Or(~a, ~aux[2]), Or(a, ~aux[1], aux[2]), Or(aux[0], aux[2
```

As you can see, Tseitin's encoding introduces several "auxiliary" variables into the expression.
You can change the name of the auxiliary variable by using the auxvarname parameter:

```
>>> f = Xor('a', Implies('b', 'c'))
>>> f.tseitin(auxvarname=' z')
And(Or(a, ~z[0]), Or(~a, ~b, c, z[0]), Or(~a, ~z[2]), Or(a, ~z[1], z[2]), Or(b, z[1]), Or(~b, c, ~z[.
```

You will see the auxiliary variables in the satisfying points:

```
>>> tf.satisfy_one()
{a: 0, aux[0]: 0, aux[1]: 1, aux[2]: 1, b: 0, c: 1}
>>> list(tf.satisfy_all())
[{a: 1, aux[0]: 0, aux[1]: 0, aux[2]: 1, b: 1, c: 0},
    {a: 0, aux[0]: 1, aux[1]: 1, aux[2]: 0, b: 1, c: 1},
    {a: 0, aux[0]: 1, aux[1]: 1, aux[2]: 0, b: 0, c: 0},
    {a: 0, aux[0]: 1, aux[1]: 1, aux[2]: 0, b: 0, c: 1}]
```

Just filter them out to get the answer you're looking for:

```
>>> [{v: val for v, val in point.items() if v.name != 'aux' } for point in tf.satisfy_al]()]
[{a: 1, b: 1, c: 0},
    {a: 0, b: 1, c: 1},
    {a: 0, b: 0, c: 0},
    {a: 0, b: 0, c: 1}]
```


1.5.8 Formal Equivalence

Two Boolean expressions f and g are formally equivalent if $f \oplus g$ is not satisfiable.
Boolean expressions have an equivalent method that implements this basic functionality. It uses the naive backtracking SAT, because it is difficult to determine whether any particular expression can be converted efficiently to a CNF.

Let's test whether bit 6 of a ripple carry adder is equivalent to bit 6 of a Kogge Stone adder:

```
>>> from pyeda.logic.addition import ripple_carry_add, kogge_stone_add
>>> A = exprvars('a', 16)
>>> B = exprvars('b', 16)
>>> S1, C1 = ripple_carry_add(A, B)
>>> S2, C2 = kogge_stone_add(A, B)
```

```
>>> S1[6].equivalent(S2[6])
True
```

Note that this is the same as the following:

```
>>> Xor(S1[6], S2[6]).satisfy_one() is None
True
```


1.6 Function Arrays

When dealing with several related Boolean functions, it is usually convenient to index the inputs and outputs. For this purpose, PyEDA includes a multi-dimensional array (MDA) data type, called an farray (function array).
The most pervasive example is computation involving any numeric data type. For example, let's say you want to add two numbers A, and B. If these numbers are 32-bit integers, there are 64 total inputs, not including a carry-in. The conventional way of labeling the input variables is $a_{0}, a_{1}, a_{2}, \ldots$, and $b_{0}, b_{1}, b_{2}, \ldots$.

Furthermore, you can extend the symbolic algebra of Boolean functions to arrays. For example, the element-wise XOR of A and B is also an array

This chapter will explain how to construct and manipulate arrays of Boolean functions. Typical examples will be onedimensional vectors, but you can shape your data into several dimensions if you like. We have purposefully adopted many of the conventions used by the numpy.array module.
The code examples in this chapter assume that you have already prepared your terminal by importing all interactive symbols from PyEDA:

```
>>> from pyeda.inter import *
```


1.6.1 Construction

There are three ways to construct farray instances:

1. Use the farray class constructor.
2. Use one of the zeros/ones/vars factory functions.
3. Use the unsigned/signed integer conversion functions.

Constructor

First, create a few expression variables:

```
>>> a, b, c, d = map(exprvar, ' abcd')
```

To store these variables in an array, invoke the farray constructor on a sequence:

```
>>> vs = farray([a, b, c, d])
>>> vs
farray([a, b, c, d])
>>> vs[2]
C
```

Now let's store some arbitrary functions into an array. Create six expressions using the secondary operators:

```
>>> f0 = Nor(a, b, c)
>>> f1 = Nand(a, b, c)
>>> f2 = Xor(a, b, c)
>>> f3 = Xnor(a, b, c)
>>> f4 = Equal(a, b, c)
>>> f5 = Unequal(a, b, c)
```

To neatly store these six functions in an farray, invoke the constructor like we did before:

```
>>> F = farray ([f0, f1, f2, f3, f4, f5])
>>>F
farray([Nor(a, b, c), Nand(a, b, c), Xor(a, b, c), Xnor(a, b, c), Equal(a, b, c), Unequal(a, b, c)])
```

This is sufficient for 1-D arrays, but the farray constructor can create mult-dimensional arrays as well. You can apply shape to the input array by either using a nested sequence, or manually using the shape parameter.
To create a 2×3 array using a nested sequence:

```
>>> F = farray([[f0, f2, f4], [f1, f3, f5]])
>>> F
farray([[Nor(a, b, c), Xor(a, b, c), Equal(a, b, c)],
    [Nand(a, b, c), Xnor(a, b, c), Unequal(a, b, c)]])
>>> F.shape
((0, 2), (0, 3))
>>> F.size
6
>>> F[0,1]
Xor(a, b, c)
```

Similarly for a 3×2 array:

```
>>> F f farray([[f0, f1], [f2, f3], [f4, f5]])
>>> F
farray([[Nor(a, b, c), Nand(a, b, c)],
    [\operatorname{Xor}(a,b,c), Xnor(a, b, c)],
    [Equal(a, b, c), Unequal(a, b, c)]])
>>> F.shape
((0, 3), (0, 2))
>>> F.size
6
>>> F[0,1]
Nand (a, b, c)
```

Use the shape parameter to manually impose a shape. It takes a tuple of dimension specs, which are (start, stop) tuples.

```
>>> F = farray([f0, f1, f2, f3, f4, f5], shape=((0, 2), (0, 3)))
>>> F
farray([[Nor(a, b, c), Xor(a, b, c), Equal(a, b, c)],
    [Nand(a, b, c), Xnor(a, b, c), Unequal(a, b, c)]])
```

Internally, function arrays are stored in a flat list. You can retrieve the items by using the flat iterator:

```
>>> list(F.flat)
[Nor(a, b, c),
Nand(a, b, c),
Xor(a, b, c),
Xnor(a, b, c),
Equal(a, b, c),
Unequal (a, b, c)]
```

Use the reshape method to return a new farray with the same contents and size, but with different dimensions:

```
>>> F.reshape(3, 2)
farray([[Nor(a, b, c), Nand(a, b, c)],
    [\operatorname{Xor}(\textrm{a},\textrm{b},\textrm{c}),}\operatorname{Xnor}(\textrm{a},\textrm{b},\textrm{c})]
    [Equal(a, b, c), Unequal(a, b, c)]])
```


Empty Arrays

It is possible to create an empty farray, but only if you supply the ftype parameter. That parameter is not necessary for non-empty arrays, because it can be automatically determined.

For example:

```
>>> empty = farray([], ftype=Expression)
>>> empty
farray([])
>>> empty.shape
((0, 0),)
>>> empty.size
0
```


Irregular Shapes

Without the shape parameter, array dimensions will be created with start index zero. This is fine for most applications, but in digital design it is sometimes useful to create arrays with irregular starting points.

For example, let's say you are designing the load/store unit of a CPU. A computer's memory is addressed in bytes, but data is accessed from memory in cache lines. If the size of your machine's cache line is 64 bits, data will be retrieved from memory eight bytes at a time. The lower 3 bits of the address bus going from the load/store unit to main memory are not necessary. Therefore, your load/store unit will output an address with one dimension bounded by (3, 32), i.e. all address bits starting from 3, up to but not including 32 .

Going back to the previous example, let's say for some reason we wanted a shape of $(7,9),(13,16))$. Just change the shape parameter:

```
>>> F = farray([f0, f1, f2, f3, f4, f5], shape=((7, 9), (13, 16)))
>>> F
farray([[Nor(a, b, c), Xor(a, b, c), Equal(a, b, c)],
    [Nand(a, b, c), Xnor(a, b, c), Unequal(a, b, c)]])
```

The size property is still the same:

```
>>> F.size
6
```

However, the slices now have different bounds:

```
>>> F.shape
((7, 9), (13, 16))
>>> F[7,14]
Nand(a, b, c)
```


Factory Functions

For convenience, PyEDA provides factory functions for producing arrays with arbitrary shape initialized to all zeros, all ones, or all variables with incremental indices.

The functions for creating arrays of zeros are:

- pyeda.boolalg.bfarray.bddzeros()
- pyeda.boolalg.bfarray.exprzeros()
- pyeda.boolalg.bfarray.ttzeros()

For example, to create a 4×4 farray of expression zeros:

```
>>> zeros = exprzeros(4, 4)
>>> zeros
farray([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]])
```

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index). If a dimension is given as a single int, it will be converted to (0 , stop) .

For example:

```
>>> zeros = bddzeros((1, 3), (2, 4), 2)
>>> zeros
farray([[[0, 0],
    [0, 0]],
    [[0, 0],
    [0, 0]]])
```

Similarly for creating arrays of ones:

- pyeda.boolalg.bfarray.bddones()
- pyeda.boolalg.bfarray.exprones()
- pyeda.boolalg.bfarray.ttones()

The functions for creating arrays of variables are:

- pyeda.boolalg.bfarray.bddvars()
- pyeda.boolalg.bfarray.exprvars()
- pyeda.boolalg.bfarray.ttvars()

These functions behave similarly to the zeros/ones functions, but take a name argument as well.
For example, to create a 4×4 farray of expression variables:

```
>>> A = exprvars('a', 4, 4)
>>> A
farray([[a[0,0], a[0,1], a[0,2], a[0,3]],
    [a[1,0], a[1,1], a[1,2], a[1,3]],
    [a[2,0], a[2,1], a[2,2], a[2,3]],
    [a[3,0], a[3,1], a[3,2], a[3,3]]])
```

The name argument accepts a tuple of names, just like the exprvar function, and the variadic dims input also supports irregular shapes:

```
>> A = exprvars(('a', 'b', 'C'), (1, 3), (2, 4), 2)
>>> A
farray([[[c.b.a[1,2,0], c.b.a[1,2,1]],
    [c.b.a[1,3,0], c.b.a[1,3,1]]],
    [[c.b.a[2,2,0], c.b.a[2,2,1]],
    [c.b.a[2,3,0], c.b.a[2,3,1]]]])
```


Integer Conversion

The previous section discussed ways to initialize arrays to all zeros or ones. It is also possible to create one-dimensional arrays that represent integers using either the unsigned or twos-complement notations.

The following functions convert an unsigned integer to a 1-D farray:

- pyeda.boolalg.bfarray.uint2bdds()
- pyeda.boolalg.bfarray.uint2exprs()
- pyeda.boolalg.bfarray.uint2tts()

The following functions convert a signed integer to a 1-D farray:

- pyeda.boolalg.bfarray.int2bdds()
- pyeda.boolalg.bfarray.int2exprs()
- pyeda.boolalg.bfarray.int2tts()

The signature for these functions are all identical. The num argument is the int to convert, and the length parameter is optional. Unsigned conversion will always zero-extend to the provided length, and signed conversion will always sign-extend.

Here are a few examples of converting integers to expressions:

```
>>> uint2exprs(42, 8)
farray([0, 1, 0, 1, 0, 1, 0, 0])
>>> int2exprs(42, 8)
farray([0, 1, 0, 1, 0, 1, 0, 0])
# A nifty one-liner to verify the previous conversions
>>> bin(42)[2:].zfill(8) [::-1]
'01010100'
>>> int2exprs(-42, 8)
farray([0, 1, 1, 0, 1, 0, 1, 1])
```

Function arrays also have to_uint and to_int methods to perform the reverse computation. They do not, however, have any property to indicate whether the array represents signed data. So always know what the encoding is ahead of time. For example:

```
>>> int2exprs(-42, 8).to_int()
-42
>>> int2exprs(-42, 8).to_uint()
214
```


1.6.2 Slicing

The farray type accepts two types of slice arguments:

- Integral indices
- Muliplexor selects

Integral Indices

Function arrays support a slice syntax that mostly follows the numpy ndarray data type. The primary difference is that farray supports nonzero start indices.
To demonstrate the various capabilities, let's create some arrays. For simplicity, we will only use zero indexing.

```
>>> A = exprvars('a', 4)
>>> B = exprvars('b', 4, 4, 4)
```

Using a single integer index will collapse an array dimension. For 1-D arrays, this means returning an item.

```
>>> A[2]
a [2]
>>> B[2]
farray([[b[2,0,0], b[2,0,1], b[2,0,2], b[2,0,3]],
    [b[2,1,0], b[2,1,1], b[2,1,2], b[2,1,3]],
    [b[2,2,0], b[2,2,1], b[2,2,2], b[2,2,3]],
    [b[2,3,0], b[2,3,1], b[2,3,2], b[2,3,3]]])
>>> B[2].shape
((0, 4), (0, 4))
```

The colon : slice syntax shrinks a dimension:

```
>>> A[:]
farray([a[0], a[1], a[2], a[3]])
>>> A[1:]
farray([a[1], a[2], a[3]])
>>> A[:3]
farray([a[0], a[1], a[2]])
>>> B[1:3]
farray([[[b[1,0,0], b[1,0,1], b[1,0,2], b[1,0,3]],
    [b[1,1,0], b[1,1,1], b[1,1,2], b[1,1,3]],
    [b[1,2,0], b[1,2,1], b[1,2,2], b[1,2,3]],
    [b[1,3,0], b[1,3,1], b[1,3,2], b[1,3,3]]],
    [[b[2,0,0], b[2,0,1], b[2,0,2], b[2,0,3]],
        [b[2,1,0], b[2,1,1], b[2,1,2], b[2,1,3]],
        [b[2,2,0], b[2,2,1], b[2,2,2], b[2,2,3]],
        [b[2,3,0], b[2,3,1], b[2,3,2], b[2,3,3]]]])
```

For N -dimensional arrays, the slice accepts up to N indices separated by a comma. Unspecified slices at the end will default to :.

```
>>> B[1,2,3]
b [1,2,3]
>>> B[:,2,3]
farray([b[0,2,3], b[1,2,3], b[2,2,3], b[3,2,3]])
>>> B[1,:,3]
farray([b[1,0,3], b[1,1,3], b[1,2,3], b[1,3,3]])
>>> B[1,2,:]
farray([b[1,2,0], b[1,2,1], b[1,2,2], b[1,2,3]])
>>> B[1,2]
farray([b[1,2,0], b[1,2,1], b[1,2,2], b[1,2,3]])
```

The . . . syntax will fill available indices left to right with : . Only one ellipsis will be recognized per slice.

```
>>> B[...,1]
farray([[b[0,0,1], b[0,1,1], b[0,2,1], b[0,3,1]],
    [b[1,0,1], b[1,1,1], b[1,2,1], b[1,3,1]],
    [b[2,0,1], b[2,1,1], b[2,2,1], b[2,3,1]],
    [b[3,0,1],b[3,1,1],b[3,2,1],b[3,3,1]]])
>>> B[1,...]
farray([[b[1,0,0], b[1,0,1], b[1,0,2], b[1,0,3]],
    [b[1,1,0], b[1,1,1], b[1,1,2], b[1,1,3]],
    [b[1,2,0], b[1,2,1], b[1,2,2], b[1,2,3]],
    [b[1,3,0], b[1,3,1], b[1,3,2], b[1,3,3]]])
```

Function arrays support negative indices. Arrays with a zero start index follow Python's usual conventions.
For example, here is the index guide for $\mathrm{A}[0: 4]$:

	\|	\|	\|
0	1	2	3
-4	-3	-2	-1

And example usage:

```
>>> A[-1]
```

a[3]
>>> A[-3:-1]
farray([a[1], a[2]])

Arrays with non-zero start indices also support negative indices. For example, here is the index guide for A [3:7]:

Multiplexor Selects

A special feature of array slicing is the ability to multiplex array items over a select input. For a $2: 1$ mux, the select may be a single function. Otherwise, it must be an farray with enough bits.
For example, to create a simple $8: 1$ mux:

```
>>> X = exprvars('x', 8)
>>> sel = exprvars('s', 3)
>>> X[sel]
Or(And(~s[0], ~s[1], ~s[2], x[0]),
    And( s[0], ~s[1], ~s[2], x[1]),
    And(~s[0], s[1], ~s[2], x[2]),
    And( s[0], s[1], ~s[2], x[3]),
    And(~s[0], ~s[1], s[2], x[4]),
    And( s[0], ~s[1], s[2], x[5]),
    And(~s[0], s[1], s[2], x[6]),
    And( s[0], s[1], s[2], x[7]))
```

This works for multi-dimensional arrays as well:

```
>>> s = exprvar('s')
>>> Y = exprvars('Y', 2, 2, 2)
```

```
>>> Y[:,s,:]
farray([[Or(And(~s, y [0,0,0]),
    And( s, y[0,1,0])),
    Or(And(~s, y [0,0,1]),
        And( s, y[0,1,1]))],
    [Or(And(~s, y[1,0,0]),
    And( s, y[1,1,0])),
    Or(And(~s, y [1,0,1]),
        And( s, y[1,1,1]))]])
```


1.6.3 Operators

Function arrays support several operators for algebraic manipulation. Some of these operators overload Python's operator symbols. This section will describe how you can use the farray data type and the Python interpreter to perform powerful symbolic computations.

Unary Reduction

A common operation is to reduce the entire contents of an array to a single function. This is supported by the OR, AND, and XOR operators because they are 1) variadic, and 2) associative.

Unfortunately, Python has no appropriate symbols available, so unary operators are supported by the following farray methods:

- pyeda.boolalg.bfarray.farray.uor()
- pyeda.boolalg.bfarray.farray.unor()
- pyeda.boolalg.bfarray.farray.uand()
- pyeda.boolalg.bfarray.farray. unand()
- pyeda.boolalg.bfarray.farray.uxor()
- pyeda.boolalg.bfarray.farray.uxnor()

For example, to OR the contents of an eight-bit array:

```
>>> X = exprvars('x', 8)
>>> X.uor()
Or(x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7])
```

One well-known usage of unary reduction is conversion from a binary-reflected gray code (BRGC) back to binary. In the following example, B is a 3-bit array that contains logic to convert the contents of G from gray code to binary. See the Wikipedia Gray Code article for background.

```
>>> G = exprvars(' g', 3)
>>> B = farray([G[i:].uxor() for i, _ in enumerate(G)])
>>> graycode = ['000', '100', '110', '010', '011', '111', '101', '001']
>>> for gs in graycode:
... print(B.vrestrict({X: gs}).to_uint())
0
```

1
2
3
4
5

Bit-wise Logic

Arrays are an algebraic data type. They overload several of Python's operators to perform bit-wise logic.
First, let's create a few arrays:

```
>>> A = exprvars('a', 4)
>>> B = exprvars('b', 4)
>>> C = exprvars('C', 2, 2)
>>> D = exprvars('d', 2, 2)
```

To invert the contents of A:

```
>>> ~A
farray([~a[0], ~a[1], ~a[2], ~a[3]])
```

Inverting a multi-dimensional array will retain its shape:

```
>>> ~C
farray([[~c[0,0], ~c[0,1]],
    [~c[1,0], ~c[1,1]]])
```

The binary OR, AND, and XOR operators work for arrays with equal size:

```
>>> A | B
farray([Or(a[0], b[0]), Or(a[1], b[1]), Or(a[2], b[2]), Or(a[3], b[3])])
>>> A & B
farray([And(a[0], b[0]), And(a[1], b[1]), And(a[2], b[2]), And(a[3], b[3])])
>>> C ^ D
farray([[Xor(c[0,0], d[0,0]), Xor(c[0,1], d[0,1])],
    [Xor(c[1,0], d[1,0]), Xor(c[1,1], d[1,1])]])
```

Mismatched sizes will raise an exception:

```
>>> A & B[2:]
Traceback (most recent call last):
ValueError: expected operand sizes to match
```

For arrays of the same size but different shape, the resulting shape is ambiguous so by default the result is flattened:

```
>>> Y = ~A | C
>>> Y
farray([Or(~a[0], c[0,0]), Or(~a[1], c[0,1]), Or(~a[2], c[1,0]), Or(~a[3], c[1,1])])
>>> Y.size
4
>>> Y.shape
((0, 4),)
```


Shifts

Function array have three shift methods:

- pyeda.boolalg.bfarray.farray.lsh(): logical left shift
- pyeda.boolalg.bfarray.farray.rsh(): logical right shift
- pyeda.boolalg.bfarray.farray.arsh(): arithmetic right shift

The logical left/right shift operators shift out num items from the array, and optionally shift in values from a cin (carry-in) parameter. The output is a two-tuple of the shifted array, and the "carry-out".

The "left" direction in lsh shifts towards the most significant bit. For example:

```
>>> X = exprvars('x', 8)
>>> X.lsh(4)
(farray([0, 0, 0, 0, x[0], x[1], x[2], x[3]]),
    farray([x[4], x[5], x[6], x[7]]))
>>> X.lsh(4, exprvars('Y', 4))
(farray([y[0], y[1], y[2], y[3], x[0], x[1], x[2], x[3]]),
    farray([x[4], x[5], x[6], x[7]]))
```

Similarly, the "right" direction in rsh shifts towards the least significant bit. For example:

```
>>> X.rsh(4)
(farray([x[4], x[5], x[6], x[7], 0, 0, 0, 0]),
    farray([x[0], x[1], x[2], x[3]]))
>>> X.rsh(4, exprvars('y', 4))
(farray([x[4], x[5], x[6], x[7], y[0], y[1], y[2], y[3]]),
    farray([x[0], x[1], x[2], x[3]]))
```

You can use the Python overloaded \ll and \gg operators for l sh, and r sh, respectively. The only difference is that they do not produce a carry-out. For example:

```
>>> X << 4
farray([0, 0, 0, 0, x[0], x[1], x[2], x[3]])
>>> X >> 4
farray([x[4], x[5], x[6], x[7], 0, 0, 0, 0])
```

Using a somewhat awkward (num, farray) syntax, you can use these operators with a carry-in. For example:

```
>>> X << (4, exprvars('Y', 4))
farray([y[0], y[1], y[2], y[3], x[0], x[1], x[2], x[3]])
>>> X >> (4, exprvars('y', 4))
farray([x[4], x[5], x[6], x[7], y[0], y[1], y[2], y[3]])
```

An arithmetic right shift automatically sign-extends the array. Therefore, it does not take a carry-in. For example:

```
>>> X.arsh(4)
(farray([x[4], x[5], x[6], x[7], x[7], x[7], x[7], x[7]]),
    farray([x[0], x[1], x[2], x[3]]))
```

Due to its importance in digital design, Verilog has a special >>> operator for an arithmetic right shift. Sadly, Python has no such indulgence. If you really want to use a symbol, you can use the cin parameter to achieve the same effect with >>:

```
>>> num = 4
>>> X >> (num, num * X[-1])
farray([x[4], x[5], x[6], x[7], x[7], x[7], x[7], x[7]])
```


Concatenation and Repetition

Two very important operators in hardware description languages are concatenation and repetition of logic vectors. For example, in this implementation of the xtime function from the AES standard, xtime [6:0] is concatenated with $1^{\prime} \mathrm{b} 0$, and xtime [7] is repeated eight times before being AND'ed with $8^{\prime} \mathrm{h} 1 \mathrm{~b}$.

```
function automatic logic [7:0]
xtime(logic [7:0] b, int n);
    xtime = b;
    for (int i = 0; i < n; i++)
        xtime = {xtime[6:0], 1'b0} // concatenation
        (8'h1b & {8{xtime[7]}}); // repetition
endfunction
```

The farray data type resembles the Python tuple for these operations.
To concatenate two arrays, use the + operator:

```
>>> X = exprvars('x', 4)
>>> Y = exprvars('y', 4)
>>> X + Y
farray([x[0], x[1], x[2], x[3], y[0], y[1], y[2], y[3]])
```

It is also possible to prepend or append single functions:

```
>>> a, b = map(exprvar, ' ab')
>>> a + X
farray([a, x[0], x[1], x[2], x[3]])
>>> X + b
farray([x[0], x[1], x[2], x[3], b])
>>> a + X + b
farray([a, x[0], x[1], x[2], x[3], b])
>>> a + b
farray([a, b])
```

Even 0 (or False) and 1 (or True) work:

```
>>> 0 + X
farray([0, x[0], x[1], x[2], x[3]])
>>> X + True
farray([x[0], x[1], x[2], x[3], 1])
```

To repeat arrays, use the * operator:

```
>>> X * 2
farray([x[0], x[1], x[2], x[3], x[0], x[1], x[2], x[3]])
>>> 0 * X
farray([])
```

Similarly, this works for single functions as well:

```
>>> a * 3
farray([a, a, a])
>>> 2 * a + b * 3
farray([a, a, b, b, b])
```

Multi-dimensional arrays are automatically flattened during either concatenation or repetition:

```
>>> Z = exprvars('z', 2, 2)
>>> X + Z
farray([x[0], x[1], x[2], x[3], z[0,0], z[0,1], z[1,0], z[1,1]])
>>> Z * 2
farray([z[0,0], z[0,1], z[1,0], z[1,1], z[0,0], z[0,1], z[1,0], z[1,1]])
```

If you require a more subtle treatment of the shapes, use the reshape method to unflatten things:

```
>>> (Z*2).reshape (2, 4)
farray([[z[0,0], z[0,1], z[1,0], z[1,1]],
    [z[0,0], z[0,1], z[1,0], z[1,1]]])
```

Function arrays also support the "in-place" $+=$ and $*=$ operators. The farray behaves like an immutable object. That is, it behaves more like the Python tuple than a list.

For example, when you concatenate/repeat an farray, it returns a new farray:

```
>>> A = exprvars('a', 4)
>>> B = exprvars('b', 4)
>>> id(A)
3050928972
>>> id(B)
3050939660
>>> A += B
>>> id(A)
3050939948
>>> B *= 2
>>> id(B)
3050940716
```

The A += B implementation is just syntactic sugar for:

```
>>>A=A + B
```

And the $\mathrm{A} *=2$ implementation is just syntactic sugar for:

```
>>>A=A*2
```

To wrap up, let's re-write the xt ime function using PyEDA function arrays.

```
def xtime(b, n):
    """Return b^n using polynomial multiplication in GF(2^8)."""
    for _ in range(n):
        b}=\operatorname{exprzeros(1) + b[:7] ^ uint2exprs(0x1b, 8) & b[7]*8
    return b
```


1.7 Two-level Logic Minimization

This chapter will explain how to use PyEDA to minimize two-level "sum-of-products" forms of Boolean functions.
Logic minimization is known to be an NP-complete problem. It is equivalent to finding a minimal-cost set of subsets of a set S that covers S. This is sometimes called the "paving problem", because it is conceptually similar to finding the cheapest configuration of tiles that cover a floor. Due to the complexity of this operation, PyEDA uses a C extension to the famous Berkeley Espresso library ${ }^{6}$.

All examples in this chapter assume you have interactive symbols imported:

```
>>> from pyeda.inter import *
```


1.7.1 Minimize Boolean Expressions

Consider the three-input function $f_{1}=a \cdot b^{\prime} \cdot c^{\prime}+a^{\prime} \cdot b^{\prime} \cdot c+a \cdot b^{\prime} \cdot c+a \cdot b \cdot c+a \cdot b \cdot c^{\prime}$

[^2]```
>>> a, b, c = map(exprvar, 'abc')
>>> f1 = ~a & ~b & ~c | ~a & ~b & c | a & ~b & c | a & b & c | a & b & ~c
```

To use Espresso to perform minimization:

```
>>> f1m, = espresso_exprs(f1)
>>> f1m
Or(And(~a, ~b), And(a, b), And(~b, c))
```

Notice that the espresso_exprs function returns a tuple. The reason is that this function can minimize multiple input functions simultaneously. To demonstrate, let's create a second function $f_{2}=a^{\prime} \cdot b^{\prime} \cdot c+a \cdot b^{\prime} \cdot c$.

```
>>> f2 = ~a & ~b & c | a & ~b & c
>>> f1m, f2m= espresso_exprs(f1, f2)
>>> f1m
Or(And(~a, ~b), And(a, b), And(~b, c))
>>> f2m
And (~b, c)
```

It's easy to verify that the minimal functions are equivalent to the originals:

```
>>> f1.equivalent(f1m)
True
>>> f2.equivalent(f2m)
True
```


### 1.7.2 Minimize Truth Tables

An expression is a completely specified function. Sometimes, instead of minimizing an existing expression, you instead start with only a truth table that maps inputs in 0,1 to outputs in $0,1, *$, where $*$ means "don't care". For this type of incompletely specified function, you may use the espresso_tts function to find a low-cost, equivalent Boolean expression.

Consider the following truth table with four inputs and two outputs:

| Inputs |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| x3 | x2 | x1 | x0 | f 1 |  |
| f 2 |  |  |  |  |  |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | X | X |
| 1 | 0 | 1 | 1 | X | X |
| 1 | 1 | 0 | 0 | X | X |
| 1 | 1 | 0 | 1 | X | X |
| 1 | 1 | 1 | 0 | X | X |
| 1 | 1 | 1 | 1 | X | X |

The espresso_tts function takes a sequence of input truth table functions, and returns a sequence of DNF expression instances.

```
>>> X = ttvars('x', 4)
>>> f1 = truthtable(X, "0000011111------")
>>> f2 = truthtable(X, "0001111100------"")
>>> f1m, f2m= espresso_tts(f1, f2)
>>> f1m
Or(x[3], And(x[0], x[2]), And(x[1], x[2]))
>>> f2m
Or(x[2], And(x[0], x[1]))
```

You can test whether the resulting expressions are equivalent to the original truth tables by visual inspection (or some smarter method):

```
>>> expr2truthtable(f1m)
x[3] x[2] x[1] x[0]
 0 0 0 0 : 0
 0}00001:
 0
 0}00101:
 0
 0
 0
 0
 1 0}00\quad0:
 1 0}00\quad1:
 1 0
 0
 1 0}00:
 1 1 0 1 : 1
 1
 1 1 1 1 : 1
>>> expr2truthtable(f2m)
x[2] x[1] x[0]
 0 0 0 : 0
 0 0 1 : 0
 0}10<0:
 0 1 1 : 1
 1 0 0 : 1
 1 0 1 : 1
 1 1 0 : 1
 1 1 1 : 1
```


### 1.7.3 Espresso Script

Starting with version 0.20 , PyEDA includes a script that implements some of the functionality of the original Espresso command-line utility.

```
$ espresso -h
usage: espresso [-h] [-e {fast,ness,nirr,nunwrap,onset, strong}] [--fast]
 [--no-ess] [--no-irr] [--no-unwrap] [--onset] [--strong]
 [file]
Minimize a PLA file
positional arguments:
 file PLA file (default: stdin)
optional arguments:
```

```
-h, --help show this help message and exit
```

Here is an example of a simple PLA file that is part of the BOOM benchmark suite. This function has 50 input variables, 5 output variables, and 50 product terms. Also, $20 \%$ of the literals in the implicants are "don't care".

```
$ cat extension/espresso/test/bb_all/bb_50x5x50_20%_0.pla
.i }5
.O }
.P }5
```



```
.ob y0 y1 y2 y3 y4
.type fr
001011110--00--0100-0010-10-01010101-010--0101111100011
0-1-1010-01000100--11011-0110001010-10001010-1-1-0 00100
0111010111110110110-100101101010010001111----1-011110000
01-0010011-001110--000-011--11--1-0100-01101--1000 00001
001011010-1100000001101--10100-010-001100111110010 00101
011-01010-10-1101110-00-1-11001-1-0000--1-1-00-000 00011
0000000011001-0000010-000110-11011001110--100-1-10 00110
00-111111-00100-100111101000-11101100--0-1110-1-10 10001
-1-10011011000011--00-0011011101-1-1101110--1-001-11100
-0101100-110111-010-01110-0110011-1-1---1001011111 11000
0-111011101000-11-1--10-0001001101000010-11-111101 11001
11000000-1-01--1111-10111111----0010--1-0--1--0111 01010
00-101000011-1-10101101-1101011-0101000-111111011-11011
1-00-11111-0010-0---000--0110-0010111--000001-0001111011
-1-1100100001--00--00001000-1-1--100-0111-00011011 11000
0-0000-010-11-1100-101-00101000111-01--11-0010-011 10000
11-1-0001100101-10-0-1-0-1100010101111-1111000-101 11101
10-01--10011111-11011-001001101100110010010-000-0- 01110
1-11010-00011101-010--101010--0111010101-11-101--1 00111
11--111-111-111-000-11000-101-1-011--1000--1111100 01111
0---0-10011101000--11001-1100-10-000011-0100011100 11110
-01--11-010-1001011-0-101000100000--10111---100-1- 11101
11-1-000010--00110-011101--11-10-1-0000110100-1101 11010
-0111110-100-11-110001001100001-100011110001001100 11110
11--00100-01--00-10---11-0001-00011101001011-01110 00000
1--010011-001-0000--0-11-001010001110-00-01-110-11 01101
100011--0101--1-1-0-101--001-0-101-1-1011101011-01 00111
0--0-01-10101-11-010011111000-1-1011100-111-01111 10100
0-0110010--11101-0---1001-1001--001-110000---1011- 00100
0-1000-0--00000010-0--1011-1001011-01-00-011001111 10000
111-1101111-01001101-111--00-01011111000001-001001 11100
0--100111-1010001-0111-0-000--00-0111101111-101100 11000
00001101100-001001-1010010010011-1101-110-10-110-1 01011
0101-01-0100101000010111--0011-0011011110-111100-0 00100
000-1--100-00-1001-10-000000100-001100-10101010001 10000
10001001-0001011-1-1-0-00101110-10100---0010001--- 10111
01011000000100100000---1--11-0001011111101-01-1011 01111
1--01--00100110001-110-0-00001011---01001000110--- 10010
0-0001--01--11101010100000000010011001000-01100001 00011
0-0100110-00111100-001--11--00-1001-00-0-11-1-0-1- 00100
101-1-100-001001-010111-01--010-1-1011-01101001001 11000
0110-111011--1-010101-011-1-00100110-00-1111000-11 11001
011001011---010011-10-00-11-001000000101101101-0-1 00100
1001111-1-1111-1001-000111010-100--0111110011000-1 10111
1-1010-1-100111110010-101011-1001000111-0000--11-1 11000
```

```
-00110001000010000010100010010-0-0-100-1-0111011-1 00101
1110-01100111111-1-1-110-0-110--011--01-11-0000-01 00000
-01010101010-1-1-00-1111010100-1001111110110--0-00 11011
110-10000001--0-0-01001111-0011-0110110100010--111 11111
101-10111000011110000-1001-001-01111-011-0001-0100 00100
.e
```

After running the input file through the espresso script, it minimizes the function to 26 implicants with significantly fewer literals.

```
$ espresso extension/espresso/test/bb_all/bb_50\times5\times50_20%_0.pla
.i 50
.O 5
.ilb x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 s23 x24 x25 x
.ob y0 y1 y2 y3 y4
.p }2
-----------------------0---11100
```



```
--------------------------------------11-1-------------1 10000
0-------------------------1---------1-1--------------}0011
--------0--------1-----------0--------0---------------}0001
-------------0---------0-0-0-------------------------------10001
--------------0-00-------------------0------------------}0010
---------------------------0-0----0----------0-------- 00011
-----------0----0--------------------------------------}1000
-------------------------1---0---1---------------------1 10000
-----------01------------------------------0---1--1 11000
-------------00-------------------------11------------}1100
----------------------------0-1---------0-0---1---- 11110
--------------------------1----1--0------------------}0010
-----1-----------------------------1-1---1----------}0011
------1---------------0-------1--1---0---------------}1100
------0----0------------------------------1-1-0---- 01000
-1---1--------1-------------------------------------0}0000
-----------------1----------------------0-----0-1-01010
--------------------0--------1---------1------------}0010
---------------------------11-------------1-0-1---- 10010
--------------------------1-----0----10-------------}0010
------0------0---------0----------0--------------------}0010
-------0----------0---1--1--0----0---------------------}1101
--------------------0------------0------------1-0---- 00100
.e
```


### 1.7.4 References

### 1.8 Using PyEDA to Solve Sudoku

According to Peter Norvig in his fantastic essay on solving every Sudoku puzzle using Python, security expert Ben Laurie once stated that "Sudoku is a denial of service attack on human intellect". I can personally attest to that.

In this example, I will explain how to use PyEDA's Boolean expressions and satisfiability engine to create a generalpurpose Sudoku solver.
First, let's get a few ground rules straight:

1. There are lots of Sudoku solvers on the Internet; I make no claims of novelty.
2. PyEDA is pretty fast, but unlikely to win any speed competitions.
3. Let's face it-this is a pretty awesome waste of time.

### 1.8.1 Getting Started

First, import all the standard symbols from PyEDA.
>>> from pyeda.inter import *
Let's also define a variable "DIGITS" that makes it easier to access the Sudoku square values.
>>> DIGITS $=$ "123456789"

### 1.8.2 Setting Up the Puzzle Grid

A Sudoko puzzle is a $9 x 9$ grid. Each square in the grid may contain any number in the digits 1-9. The following example grid was generated by Web Sudoku.


Figure 1.6: Example Sudoku Grid

To represent the state of the grid coordinate, create a 3-dimensional variable, X .
$\ggg \mathrm{X}=\operatorname{exprvars}\left({ }^{\prime} \mathrm{X}^{\prime},(1,10),(1,10),(1,10)\right)$
exprvars is a versatile function for returning arrays of arbitrary dimension. The first argument is the variable name. Each additional argument adds an additional dimension with a non-negative start and stop index. If you provide only a number instead of a two-tuple, the start index is zero. For example, we could also have used exprvars (' $\mathrm{x}^{\prime}$, 9, 9, 9), but that would have given $X[0: 9,0: 9,0: 9]$ instead of $X[1: 10,1: 10,1: 10]$.

The variable x is a 9 x 9 x 9 bit vector, indexed as $\mathrm{x}[$ row, column, value]. So for the Example Sudoku Grid, since row 5 , column 3 has value ' 8 ', we would represent this by setting $\mathrm{X}[5,3,8]=1$.

### 1.8.3 Constraints

Now that we have a variable $\mathrm{X}[\mathrm{r}, \mathrm{c}, \mathrm{v}]$ to represent the state of the Sudoku board, we need to program the constraints. We will use the familiar Boolean And function, and the OneHot function. In case you are not familiar with the OneHot function, we will describe it here.

## One Hot Function

Let's say I have three variables, $\mathbf{a}, \mathbf{b}$, and $\mathbf{c}$.

```
>>> a, b, c = map (exprvar, 'abc')
```

I want to write a Boolean formula that guarantees that only one of them is true at any given moment.
>>> $\mathrm{f}=\operatorname{OneHot}(\mathrm{a}, \mathrm{b}, \mathrm{c})$
You can use PyEDA to automatically produce the truth table.

```
>>> expr2truthtable(f)
c b a
0 0 0 : 0
0 0 1 : 1
0 1 0 : 1
0 1 1 : 0
1 0 0 : 1
1 0 1 : 0
1 1 0 : 0
1 1 1 : 0
```

By default, the OneHot function returns a formula in conjunctive normal (product-of-sums) form. Roughly translated, this formula says that "no two variables can both be true, and at least one must be true".

```
>>> f
And(Or(~a, ~b), Or(~a, ~c), Or(~b, ~c), Or(a, b, c))
```

In disjunctive normal (sum-of-products) form, the function looks like this:

```
>>> f.to_dnf()
Or(And(~a, ~b, c), And(~a, b, ~c), And(a, ~b, ~c))
```


## Value Constraints

You probably already noticed that if the square at $(5,3)$ has value ' 8 ', it is not allowed to have any other value. That is, if $X[5,3,8]=1$, then $X[5,3,1: 10]==[0,0,0,0,0,0,0,1,0]$.

We need to write a constraint formula that says "every square on the board can assume only one value." With PyEDA, you can write this formula as follows:

```
>>> V = And(* [
... And (* [
... OneHot(*[X[r, c, v]
... for }v\mathrm{ in range(1, 10)])
... for c in range(1, 10)])
... for r in range(1, 10)])
```


## Row and Column Constraints

Next, we need to write formulas that say "every square in each row is unique", and "every square in each column is unique", respectively.

```
>>> R = And(* [
... And (* [
... OneHot(*[X[r, c, v]
... for c in range(1, 10)])
... for v in range(1, 10)])
... for r in range(1, 10)])
>>> C = And(* [
... And (* [
... OneHot(*[X[r, c, v]
... for r in range(1, 10)])
... for v in range(1, 10)])
... for c in range(1, 10)])
```


## Box Constraints

The box constraints are a little tricker. We need a formula that says "every square in a box is unique". The key to understanding how to write this formula is to think of the grid as consisting of $3 \times 3$ boxes. Now instead of iterating over the nine squares in a row or column, we will iterate over the 3 rows and 3 columns of the $3 \times 3$ boxes.

```
>>> B = And(* [
... And(* [
... OneHot(*[X[3*br+r, 3*bc+c, v]
... for r in range(1, 4) for c in range(1, 4)])
... for v in range(1, 10)])
... for br in range(3) for bc in range(3)])
```


## Putting It All Together

Now that we have the value, row, column, and box constraints, we need to combine them all into a single formula. We will use the And function to join the constraints, because all constraints must be true for the puzzle to be solved.

```
>>>S=And(V, R, C, B)
>>> len(S.xs)
10530
```

As you can see, the constraints formula is quite large.

### 1.8.4 Preparing the Input

We now have the generic constraints for the rules of Sudoku, but when you sit down to solve a puzzle, you are always given a set of known values. These are the inputs, and they will further constrain the solution.
Here is a function to parse an input string, and produce the input constraints. Any character in the set 1-9 will be taken as an assignment, the values ' 0 ' and '.' (period) will be taken as an unknown, and all other characters will be ignored. This function also returns a CNF data type.

```
>>> def parse_grid(grid):
... chars = [c for c in grid if c in DIGITS or c in "O."]
... assert len(chars) == 9 ** 2
```

```
... return And(*[X[i // 9 + 1, i % 9 + 1, int(c)]
... for i, c in enumerate(chars) if c in DIGITS])
```

The example grid above can be written like this:

```
>>> grid= (".731...|8.."
... "..4|13.|.5."
... ".85|..6|31."
... "---+---+---"
... "5..|.9.|.3."
... "..8|.1.|5.."
... ".1.|.6.|..7"
... "---+---+---"
... ".51|6..|28."
... ".4.|.52।9.."
... "..2|...|64.")
```


### 1.8.5 Display Methods

To display the solution, we will need some methods. The PyEDA SAT solver returns a dictionary that represents a "point" in an N -dimensional Boolean space. That is, it maps N Boolean variables (in our case 729) onto their values in $\{0,1\}$.

```
>>> def get_val(point, r, c):
... for v in range(1, 10):
... if point[X[r, c, v]]:
... return DIGITS[v-1]
... return "X"
>>> def display(point):
... chars = list()
... for r in range(1, 10):
... for c in range(1, 10):
... if c in (4, 7):
... chars.append("|")
... chars.append(get_val(point, r, c))
... if r != 9:
... chars.append("\n")
... if r in (3, 6):
...chars.append("---+---+---\n")
... print("".join(chars))
```


### 1.8.6 Finding the Solution

Without further ado, let's use the PicoSAT fast SAT solver to crunch the numbers.

```
>>> def solve(grid):
... with parse_grid(grid):
... return S.satisfy_one()
```

Here is the solution to the Example Sudoku Grid:

```
>>> display(solve(grid))
173|529|864
694|138|752
285|476|319
```

```
---+---+---
567|294|138
428|713|596
319|865|427
---+---+---
951|647|283
846|352|971
732|981|645
```

That example was actually a pretty easy puzzle. Let's see how the Sudoku solver handles a few harder puzzles.

```
>>> grid= ("6..|3.2|..."
... ".5.|...|.1."
... "...|...|..."
... "---+---+---"
... "7.2|6..|..."
... "...|...|.54"
... "3..|...|..."
... "---+---+---"
... ".8.|15.|..."
... "...|.4.|2.."
... "...|...|7..")
>>> display(solve(grid))
614|382|579
953|764|812
827|591|436
---+---+---
742|635|198
168|279|354
395|418|627
---+---+---
286|157|943
579|843|261
431|926|785
>>> grid = ("38.16..|..."
... "..9|...|..."
... ".2.|.3.|51."
... "---+---+---"
... "...|..5|..."
... ".3.|.1.|.6."
... "...|4..|..."
... "---+---+---"
... ".17|.5.|.8."
... "...|...|9.."
... "...|..7|.32")
>>> display(solve(grid))
385|621|497
179|584|326
426|739|518
---+---+---
762|395|841
534|812|769
891|476|253
---+---+---
917|253|684
```


### 1.9 All Solutions To The Eight Queens Puzzle

The eight queens puzzle is the problem of placing eight chess queens on an 8 x 8 chessboard so that no two queens attack each other. It is a classic demonstration of finding the solutions to a constraint problem.
In this essay we will use the PyEDA SAT solver to find all solutions to the eight queens puzzle.

### 1.9.1 Getting Started

First, import all the standard symbols from PyEDA.

```
>>> from pyeda.inter import *
```


### 1.9.2 Setting Up the Chess Board

A chess board is an 8 x 8 grid. Each square on the grid either has a queen on it, or doesn't. Therefore, we can represent the board using a two-dimensional bit vector, X .

```
>>> X = exprvars('x', 8, 8)
```


### 1.9.3 Constraints

## Row and Column Constraints

Rather than start with the constraint that $\sum X_{i, j}=8$, we will instead start with a simplifying observation. In order to place eight queens on the board, since there are exactly eight rows and eight columns on the board itself, it is obvious that exactly one queen must be placed on each row, and each column.

First, we write a constraint that says "exactly one queen must be placed on each row".
$\ggg R=A n d(*[\operatorname{OneHot}(*[X[r, C]$ for $C$ in range(8)]) for $r$ in range(8)])
Next, we write a constraint that says "exactly one queen must be placed on each column".
$\ggg C=\operatorname{And}(*[\operatorname{OneHot}(*[X[r, c]$ for $r$ in range(8)]) for $c$ in range (8)])

## Diagonal Constraints

Diagonal constraints are easy to visualize, but slightly trickier to specify mathematically. We will break down the diagonal constraints into two separate sets:

- left-to-right
- right-to-left

In both cases, the diagonal is always oriented "bottom-to-top".
In both cases, we need to write a constraint that says "at most one queen can be located on each diagonal".

```
>>> starts = [(i, 0) for i in range(8-2, 0, -1)] + [(0, i) for i in range(8-1)]
>>> lrdiags = []
>>> for r, c in starts:
... lrdiags.append([])
... ri, ci = r, c
... while ri < 8 and ci < 8:
... lrdiags[-1].append((ri, ci))
... ri += 1
... ci += 1
>>> DLR = And(*[OneHot0(*[X[r,c] for r, c in diag]) for diag in lrdiags])
>> starts = [(i, 8-1) for i in range(8-2, -1, -1)] + [(0, i) for i in range(8-2, 0, -1)]
>>> rldiags = []
>>> for r, c in starts:
... rldiags.append([])
... ri, ci = r, c
... while ri < 8 and ci >= 0:
... rldiags[-1].append((ri, ci))
... ri += 1
... ci -= 1
.••
>>> DRL = And(*[OneHot0(*[X[r,c] for r, c in diag]) for diag in rldiags])
```


## Putting It All Together

Now that we have constraints for rows, columns, and diagonals, we have successfully defined all rules for solving the puzzle. Put them all together using the And function, because all constraints must simultaneously be valid.
$\ggg S=R$ \& $C$ \& DLR \& DRL
Verify the formula is in CNF form, and show how large it is:

```
>>> S.is_cnf()
True
>>> len(S.xs)
74
```


### 1.9.4 Display Method

For convenience, let's define a function display to conveniently convert a solution point to ASCII:

```
>>> def display(point):
... chars = list()
... for r in range(8):
... for c in range(8):
... if point[X[r,c]]:
... chars.append("Q")
... else:
... chars.append(".")
... if r != 7:
... chars.append("\n")
... print("".join(chars))
```


### 1.9.5 Find a Single Solution

Find a single solution to the puzzle using the satisfy_one method:

```
>>> display(S.satisfy_one())
. Q
...Q....
Q.......
..Q.....
.....Q..
.Q......
......Q.
....Q...
```


### 1.9.6 Find All Solutions

Part of the challenge of the eight queens puzzle is to not just find a single solution, but find all solutions. Use the satisfy_all method to iterate through all solutions:

```
>>> for i, soln in enumerate(S.satisfy_all()):
... print("Solution", i+1, end="\n\n")
... display(soln)
... print("")
Solution 1
.......Q
...Q....
Q.......
..Q.....
.....Q..
.Q......
......Q.
....Q...
```

It is easy to verify that there are exactly 92 distinct solutions to the puzzle:

```
>>> S.satisfy_count()
92
>>> len(list(S.satisfy_all()))
92
```


### 1.10 Release Notes

### 1.10.1 Release 0.27

## Version 0.27.1

Fixed a segfault issue with the to_dnf and to_cnf functions. See Issue 109 for details.

## Version 0.27.0

Note: This release involves many backwards-incompatible changes, so please browse through these release notes when upgrading from 0.26 to 0.27 .

The major new feature in this release is the addition of a high performance $C$ extension for Boolean expressions. See Issue 98 for some details, but the idea is fairly simple. Since expressions are basically the central data type of PyEDA, it was about time they received the proper performance attention. So I spent a couple months hacking on a C extension located in extension/boolexpr. Now most of the expensive transformations are handled at the $C$ level. For example, simplification and conversion to DNF/CNF are much faster.

The C library uses reference counting for memory management, and I have done some extensive testing to make sure it doesn't leak memory. The API isn't documented to the level of a finished product, but if you want to figure out the broad strokes just read the boolexpr. h header file. The algorithms are all single-threaded at the moment. In a future release I would like to experiment with using OpenMP tasks to accelerate the work.

With that said, here's a list of changes.
The deprecated Expression.factor method went away, replaced by the to_nnf method.
Also, the deprecated Expression. invert method went away. The simplification and NNF transformation algorithms are more efficient now, so you really don't need this anyways.
The Expression.to_unicode and Expression.to_latex methods went away. They may come back in the future, but they were undocumented and broken anyways.

The Expression class hierarchy is now completely different. Expressions are split up into two categories: Atom and Operator. Atoms are sub-divided into Constant and Literal, and literals are further subdivided into Complement, and Variable. Note that it is Variable, not ExprVariable. Operators now have completely different class names. Instead of ExprOr, it is now OrOp. ExprNot becomes NotOp, etc.

Probably the other most noticeable change to the UI is that using overloaded operators no longer automatically simplifies expressions. For example:

```
>>> a, b, c, d = map(exprvar, 'abcd')
>>> a & b & c & d
And (And (And (a, b), c), d)
```

The reason I made this change is that simplification costs a bit of CPU time, and we should avoid that when creating large expressions. The factory operators still simplify by default:

```
>>> And (a, b, c, d)
And (a, b, c, d)
```

You can no longer count on the ordering of clauses in a two-level expression. This was done for performance reasons as well. It is very wasteful to to the computations necessary for figuring out a canonical ordering, and the return on investment isn't very high. If you have written tests that rely on some fixed operand ordering, they will probably break. Literals within clauses, on the other hand, are still ordered by their uniqid values.
There is now an Expression. size method, which returns the number of nodes in the tree. This number is a nice proxy for memory usage if you multiply it by the size of a BoolExpr node.

The Expression.absorb method is now gone, but if you use Expression.to_dnf or Expression.to_cnf, it will automatically apply absorption for you. Also, it is much faster than it was before.

My apologies to anybody using Windows, because I have not had the necessary machines for testing a build on that platform. Feel free to submit a pull request if you find something that is not portable.

Though this addition is very exciting, there is still plenty of room for improvement in the performance area. I would like to experiment with using OpenMP "tasks" to accelerate big tree transformations. Currently, the SAT implementation does not happen directly in the C layer. That requires further integration between the two C APIs. Also, annoyingly, the Tseitin transformation code is still written in Python. This is due to the problem that this transformation requires the ability to create new variable objects, which is currently handled at the Python level. This is not an unsolvable problem, but requires some work.

I'm almost positive I missed a few details. Feel free to email with comments and suggestions.
Happy programming!

### 1.10.2 Version 0.26

Another small, incremental release.
The most important changes were related to Issue 99. Simplified the expression class hierarchy a bit. Got rid of Nor, Nand, and Xnor expression classes, because they're not all that useful. Eliminated auto-simplification of degenerate forms.

Updated to PicoSAT version 960.
Got rid of some old DPLL cruft. The PicoSAT extension is so superior to my amateurish Python implementation, no point in keeping it around anymore.
Changed the names of various exceptions from something like LexError to lex. Error. I was influenced by the Exceptions section from the Google Python Style Guide.
Deprecated expression fact or methods in favor of the more hip negation normal form (NNF) terminology. See Issue 101 for details.

Updated the formatting of truth table strings. Now the inputs are aligned beneath their variable names.
Previously:

```
inputs: x2 x1 x0
000 0
0 0 1 0
0 1 0 0
011 1
100 0
101 1
1101
111 1
```

Now:

```
x2 x1 x0
 0 0 0:0
 0 0 1 : 0
 0}100:
 0}1111:
 1 0 0 : 0
 1 0}10:
 1 0 : 1
 1 1 : 1
```


### 1.10.3 Version 0.25

This is a small, incremental release. I recently changed jobs and moved, so development will definitely slow down for a while.

Function array concatenation and repetition for MDAs is now a bit smarter (Issue 96). Rather than simply flattening, the operators will attempt to retain the shape of the MDAs if possible. For example, a $2 \times 6 \times 7+2 \times 6 \times 7$ concatenation will return $4 \times 6 \times 7$, and $2 \times 6 \times 7 * 2$ repetition will return $4 \times 6 \times 7$.

Got rid of a[0] [1] [2] expression parsing syntax. Use a[0, 1, 2] instead. Also got rid of the bitvec function. Use the exprvars function (or bddvars, ttvars) instead. Finally all vestiges of the legacy BitVector MDA methodology are gone.

Everything else was just miscellaneous code/test/documentation cleanup.

### 1.10.4 Version 0.24

Variables names are now required to be $C$-style identifiers. I.e., $\left[a-z A-Z_{-}\right]\left[a-z A-Z 0-9 \_\right] *$.
The expression parser now handles both a [1] [2] [3] and a [1, 2, 3] syntaxes (Issue 91). The a [1] [2] [3] is deprecated.

Got rid of expression is_neg_unate, is_pos_unate, and is_binate functions. I haven't been able to find an efficient algorithm for this, so just convert expressions and BDDs to truth tables first. If your function is too big to fit in a truth table, it's probably also too big to expand to a canonical expression.
$\operatorname{Not}(\operatorname{Not}(\ldots)$.$) double negation is now automatically reduced, just like \operatorname{Not}(\operatorname{Nand}(\ldots)$ ), etc.
Cleaned up the definition of expression depth (Issue 92). This is not backwards compatible.
Fixed Issue 93, picosat script fails with trivial zero input:

```
$ picosat
p cnf 0 1
0
```

Changed RegexLexer to yield EndToken at the end of a token stream. This makes parsing nicer, avoiding catching StopIteration everywhere.

Got rid of factor=False on expression factory functions. This was overly designed UI.
The expression restrict method is a little faster now. Especially for big functions.
Added lots of new reference documentation.
Added new farray documentation chapter. Fixed several little issues with function arrays during this process. The constructor now takes an $f t y p e=$ None parameter. Negative indices make more sense now. Slices behave more like Python tuple slices. Fixed several inconsistencies with empty arrays.
Deprecated bitvec function.

### 1.10.5 Version 0.23

This version introduces a new picosat script. Now you can solve DIMACS CNF files from the command-line. See http://pyeda.readthedocs.org/en/latest/expr.html\#picosat-script for details.
Finally there is a proper documentation chapter for binary decision diagrams! While writing this documentation, I noticed, and fixed some obscure bugs related to incorrect usage of weak references to BDD nodes.

Made some minor changes to the public interface of the bdd module.

Replaced the traverse method with three options for BDD iteration:

- bdd.dfs_preorder - Depth-first search pre-order traversal
- bdd.dfs_postorder - Depth-first search post-order traversal
- bdd.bfs () - Breadth-first search

Got rid of the deprecated uint $2 b v$ and int $2 b v$ functions. Use the uint2exprs, int 2 exprs functions instead.
Changed the pyeda.parsing. parse_pla function so it takes a string input. This makes it much easier to test.
Deprecated the is_neg_unate, is_pos_unate, is_binate methods for expressions. I haven't found a correct algorithm that is better than just 1) converting to a truth table, and 2) checking for monotonicity in the cofactors.
As of this release, I will be dropping support for Python 3.2.

### 1.10.6 Version 0.22

A couple features, and some good bug-fixes in this release.
Fixed Issue 80. Apparently, I forgot to implement the right-side version of XOR operator: $0 \wedge \mathrm{x}$.
Fixed Issue 81. I continue finding bugs with degenerate forms. This particular one comes up when you try to do something similar to $\operatorname{Or}(\operatorname{Or}(\mathrm{a}, \mathrm{b}))$. The __new__ method was implemented incorrectly, so I moved the Or (a) $=a$ (and similar) rules to the simplify method.

To match the notation used by Univ of Illinois VLSI class, I changed BDD low/high nodes to "lo", and "hi".
Got rid of the "minus" operator, $\mathrm{a}-\mathrm{b}$. This was previously implemented as a $\mid \sim \mathrm{b}$, but I don't think it has merit anymore.

The farray type now uses the + operator for concatenation, and $*$ for repetition. These are very important features in SystemVerilog. See Issue 77 for details.
Implemented the farray.__setitem__ method. It is very useful to instantiate an farray using exprzeros, and then programmatically assign indices one-by-one. See Issue 78 for details.

To demonstrate some of the fancy, new farray features, I added the AES algorithm to the logic package. It manages to complete all the logic assignments, but I haven't been able to test its correctness yet, because it explodes the memory on my machine. At a bare minimum, it will be a nice test case for performance optimizations necessary to handle large designs.

### 1.10.7 Version 0.21

Important bug fix! Issue 75. Harnesser pointed out that Espresso was returning some goofy results for degenerate inputs (a literal or AND (lit, lit, ...)).

The major new feature in this release is the farray mult-dimensional array (MDA) data type. The implementation of BitVector was a kludge - it was built around the Expression function type, and didn't support all the fancy things you could do with numpy slices. All usage of the old Slicer and BitVector types has been eliminated, and replaced by farray. This includes the bitvec, uint 2 bv , and int 2 bv functions, and the contents of the pyeda.logic package (addition, Sudoku, etc).

Both uint $2 b v$ and int $2 b v$ are deprecated, superceded by uint 2 exprs and int $2 e x p r s$ (or uint $2 b d d s$, etc). So far I haven't deprecated bitvec, because it's a very commonly-used function.

See Issue 68 for some details on the farray type. My favorite part is the ability to multiplex an farray using Python's slice syntax:

```
>>> xs = exprvars('x', 4)
>>> sel = exprvars('s', 2)
>>> xs[sel]
Or(And(~s[0], ~s[1], x[0]), And(s[0], ~s[1], x[1]), And(~s[0], s[1], x[2]), And(s[0], sl1], x[3]))
```

This even works with MDAs:

```
>>> xs = exprvars(' x', 4, 4)
>>> sel = exprvars('s', 2)
>>> xs[0,sel]
Or(And(~s[0], ~s[1], x[0][0]), And(s[0], ~s[1], x[0][1]), And(~s[0], s[1], x[0][2]), And(s[0], s[1],
```

Added AchillesHeel function to expression parsing engine.
Eliminated the + and $*$ operators for Boolean OR, AND, respectively. This is annoying, but I need these operators for Issue 77. Sorry for any trouble, but that's what major version zero is for :).

### 1.10.8 Version 0.20

Probably the most useful feature in this release is the espresso script:

```
$ espresso -h
usage: espresso [-h] [-e {fast,ness,nirr,nunwrap,onset,strong}] [--fast]
 [--no-ess] [--no-irr] [--no-unwrap] [--onset] [--strong]
 [file]
Minimize a PLA file
positional arguments:
 file PLA file (default: stdin)
optional arguments:
```

This script implements a subset of the functionality of the original Espresso command-line program. It uses the new parse_pla function in the pyeda. parsing.pla module to parse common PLA files. Note that the script only intends to implement basic truth-table functionality at the moment. It doesn't support multiple-valued variables, and various other Espresso built-in features.

Added Espresso get_config and set_config functions, to manipulate global configuration
New Bitvector methods:

- unor - unary nor
- unand - unary nand
- uxnor - unary xnor

Made BitVector an immutable type. As a result, dropped item assignment $\mathrm{X}[0]=\mathrm{a}$, zero extension X. zext (4), sign extension X. sext (4), and append method.

The BitVector type now supports more overloaded operators:

- X + Y concatenate two bit vectors
- $\mathrm{X} \ll \mathrm{n}$ return the bit vector left-shifted by n places
- $\mathrm{X}>\mathrm{n}$ return the bit vector right-shifted by n places

Both left shift and right shift are simple shifts-they use the default "carry-in" of zero.
Got rid of boolify utility function. It had been replaced over time by more sophisticated techniques.
There is a new Mux factory function, for multiplexing arbitrarily many input functions.
Update to PicoSAT 959. Check the homepage for details, but it looks like the only changes were related to header file documentation.

Added a neat capability to specify assumptions for SAT-solving using a with statement. It supports both literal and product-term forms:

```
>>> f = Xor(a, b, c)
>>> with a, ~b:
... print(f.satisfy_one())
{a: 1, b: 0, c: 0}
>>> with a & ~b:
... print(f.satisfy_one())
{a: 1, b: 0, c: 0}
```

At the moment, this only works for the satisfy_one method, because it is so handy and intuitive.

### 1.10.9 Version 0.19

## Release 0.19.3

Enhanced error handling in the Espresso C extension.

## Release 0.19.2

Added the espresso_tts function, which allows you to run Espresso on one or more TruthTable instances.

## Release 0.19.1

Fixed a bone-headed mistake: leaving espresso.h out of the source distribution. One of these days I will remember to test the source distribution for all the necessary files before releasing it.

## Release 0.19.0

This is a very exciting release! After much hard work, PyEDA now has a C extension to the famous Espresso logic minimization software from Berkeley! See the new chapter on two-level logic minimization for usage information.

Also, after some feedback from users, it became increasingly obvious that using the $-+\star$ operators for NOT, OR, AND was a limitation. Now, just like Sympy, PyEDA uses the $\sim \mid \& \wedge$ operators for symbolic algebra. For convenience, the legacy operators will issue deprecation warnings for now. In some upcoming release, they will no longer work.

After other feedback from users, I changed the way Expression string representation works. Now, the __str__ method uses Or, And, etc, instead of ascii characters. The idea is that the string representation now returns valid Python that can be parsed by the expr function (or the Python interpreter). To provide support for fancy formatting in IPython notebook, I added the new to_unicode and to_latex methods. These methods also return fancy string representations.
For consistency, the uint 2 vec and int 2 vec functions have been renamed to uint 2 bv and int 2 bv , respectively.
Since is_pos_unate, is_neg_unate, and is_binate didn't seem like fundamental operations, I remove them from the Function base class.

### 1.10.10 Version 0.18

## Release 0.18.1

Three minor tweaks in this release:

- expr/bdd to_dot methods now return undirected graphs.
- Added AchillesHeel factory function to expr.
- Fixed a few obscure bugs with simplification of Implies and ITE.


## Release 0.18.0

New stuff in this release:

- Unified the Expression and Normal form expression types, getting rid of the need for the $n f e x p r$ module.
- Added to_dot methods to both Expression and BinaryDecisionDiagram data types.

Mostly incremental changes this time around. My apologies to anybody who was using the nfexpr module. Lately, Expression has gotten quite fast, especially with the addition of the PicoSAT C extension. The normal form data type as set (frozenset (int)) was not a proper implementation of the Function class, so finally did away with it in favor of the new "encoded" representation that matches the Dimacs CNF convention of mapping an index 1..N to each variable, and having the negative index correspond to the complement. So far this is only useful for CNF SAT-solving, but may also come in handy for any future, fast operations on 2-level covers.
Also, somewhat awesome is the addition of the to_dot methods. I was playing around with IPython extensions, and eventually hacked up a neat solution for drawing BDDs into the notebook. The magic functions are published in my ipython-magic repo. See the usage notes. Using subprocess is probably not the best way to interface with Graphviz, but it works well enough without any dependencies.

### 1.10.11 Version 0.17

Release 0.17.1
Got rid of the assumptions parameter from boolalg.picosat.satisfy_all function, because it had no effect. Read through picosat. h to figure out what happened, and you need to re-apply assumptions for every call to picosat_sat. For now, the usage model seems a little dubious, so just got rid of it.

## Release 0.17.0

New stuff in this release:

- Added assumptions=None parameter to PicoSAT satisfy_one and satisfy_all functions. This produces a very nice speedup in some situations.
- Got rid of extraneous picosat.py Python wrapper module. Now the PicoSAT Python interface is implemented by picosatmodule.c.
- Updated Nor/Nand operators to secondary status. That is, they now can be natively represented by symbolic expressions.
- Added a Brent-Kung adder to logic.addition module
- Lots of other miscellaneous cleanup and better error handling


### 1.10.12 Version 0.16

## Release 0.16.3

Fixed bug: absorption algorithm not returning a fully simplified expression.

## Release 0.16.2

Significantly enhance the performance of the absorption algorithm

## Release 0.16.1

Fixed bug: PicoSAT module compilation busted on Windows

## Release 0.16.0

New stuff in this release:

- Added Expression complete_sum method, to generate a normal form expression that contains all prime implicants.
- Unicode expression symbols, because it's awesome
- Added new Expression ForEach, Exists factory functions.
- Changed frozenset implementation of OrAnd and EqualBase arguments back to tuple. The simplification aspects had an unfortunate performance penalty. Use absorb to get rid of duplicate terms in DNF/CNF forms.
- Added flatten=False/True to Expression to_dnf, to_cdnf, to_cnf, to_ccnf methods. Often, flatten=False is faster at reducing to a normal form.
- Simplified absorb algorithm using Python sets.
- Expression added a new splitvar property, which implements a common heuristic to find a good splitting variable.


### 1.10.13 Version 0.15

## Release 0.15.1

- Thanks to Christoph Gohlke, added build support for Windows platforms.


## Release 0.15.0

This is probably the most exciting release of PyEDA yet! Integration of the popular PicoSAT fast C SAT solver makes PyEDA suitable for industrial-strength applications. Unfortunately, I have no idea how to make this work on Windows yet.

Here are the full release notes:

- Drop support for Python 2.7. Will only support Python 3.2+ going forward.
- Integrate PicoSAT, a compact SAT solver written in C.
- Added lots of new capabilities to Boolean expression parsing:
- $s$ ? d1 : d0 (ITE), $p=>q$ (Implies), and $p<=>q$ (Equal) symbolic operators.
- Full complement of explicit form Boolean operators: Or, And, Xor, Xnor, Equal, Unequal, Nor, Nand, OneHot0, OneHot, Majority, ITE, Implies, Not
- The expr function now simplifies by default, and has simplify=True, and factor=False parameters.
- New Unequal expression operator.
- New Majority high-order expression operator.
- OneHot 0, OneHot, and Ma jority all have both disjunctive (conj=False) and conjunctive (conj=True) forms.
- Add new Expression.to_ast method. This might replace the expr2dimacssat function in the future,
- Fixed bug: Xor.factor (conj=True) returns non-equivalent expression.
- Changed the meaning of conj parameter in Expression.factor method. Now it is only used by the top-level, and not passed recursively.
- Normal form expression no longer inherit from Function. They didn't implement the full interface, so this just made sense.
- Replaced pyeda.expr.expr2dimacscnf with a new pyeda.expr.DimacsCNF class. This might be unified with normal form expressions in the future.


### 1.10.14 Version 0.14

Release 0.14.2

Fixed Issue \#42.
There was a bug in the implementation of OrAnd, due to the new usage of a frozenset to represent the argument container.

With 0.14.1, you could get this:


```
True
```

Now:

```
>>> And('a', 'b', 'c') == Or('a', ' b', ' c')
False
```

The == operator is only used by PyEDA for hashing, and is not overloaded by Expression. Therefore, this could potentially cause some serious issues with Or/And expressions that prune arguments incorrectly.

## Release 0.14.1

Fixed Issue \#41. Basically, the package metadata in the 0.14 .0 release was incomplete, so the source distribution only contained a few modules. Whoops.

## Release 0.14.0

This release reorganizes the PyEDA source code around quite a bit, and introduces some awesome new parsing utilities.
Probably the most important new feature is the addition of the pyeda.boolalg.expr.expr function. This function takes int or str as an input. If the input is a str instance, the function parses the input string, and returns an Expression instance. This makes it easy to form symbolic expression without even having to declare variables ahead of time:

```
>>> from pyeda.boolalg.expr import expr
>>> f = expr("-a * b + -b * c")
>>> g = expr("(-x[0] + x[1]) * (-x[1] + x[2])")
```

The return value of expr function is not simplified by default. This allows you to represent arbitrary expressions, for example:

```
>>> h = expr("a * 0")
>>> h
0 * a
>>> h.simplify()
0
```

- Reorganized source code:
- Moved all Boolean algebra (functions, vector functions) into a new package, pyeda.boolalg.
- Split arithmetic into addition and gray_code modules.
- Moved all logic functions (addition, gray code) into a new package, pyeda. logic.
- Created new Sudoku module under pyeda.logic.
- Awesome new regex-based lexical analysis class, pyeda.parsing. RegexLexer.
- Reorganized the DIMACS parsing code:
- Refactored parsing code to use RegexLexer.
- Parsing functions now return an abstract syntax tree, to be used by pyeda.boolalg.ast2expr function.
- Changed dimacs.load_cnf to pyeda.parsing.dimacs.parse_cnf.
- Changed dimacs.load_sat to pyeda. parsing. dimacs. parse_sat.
- Changed dimacs.dump_cnf to pyeda.boolalg.expr2dimacscnf.
- Changed dimacs.dump_sat to pyeda.boolalg.expr2dimacssat.
- Changed constructors for Variable factories. Unified namespace as just a part of the name.
- Changed interactive usage. Originally was from pyeda import *. Now use from pyeda.inter import *.
- Some more miscellaneous refactoring on logic expressions:
- Fixed weirdness with Expression.simplified implementation.
- Added new private class _ArgumentContainer, which is now the parent of ExprOrAnd, ExprExclusive, ExprEqual, ExprImplies, ExprITE.
- Changed ExprOrAnd argument container to a frozenset, which has several nice properties for simplification of AND/OR expressions.
- Got rid of pyeda. alphas module.
- Preliminary support for logic expression complete_sum method, for generating the set of prime implicants.
- Use a "computed table" cache in BDD restrict method.
- Use weak references to help with BDD garbage collection.
- Replace distutils with setuptools.
- Preliminary support for Tseitin encoding of logic expressions.
- Rename pyeda. common to pyeda. util.


### 1.10.15 Version 0.13

Wow, this release took a huge leap from version 0.12 . We're probably not ready to declare a " 1.0 ", but it is definitely time to take a step back from API development, and start focusing on producing useful documentation.

This is not a complete list of changes, but here are the highlights.

- Binary Decision Diagrams! The recursive algorithms used to implement this datatype are awesome.
- Unification of all Variable subclasses by using separate factory functions (exprvar, ttvar, bddvar), but a common integer "uniqid".
- New "untyped point" is an immutable 2-tuple of variable uniqids assigned to zero and one. Also a new urestrict method to go along with it. Most important algorithms now use untyped points internally, because the set operations are very elegant and avoid dealing with which type of variable you are using.
- Changed the Variable's namespace argument to a tuple of strings.
- Restricting a function to a $0 / 1$ state no longer returns an integer. Now every function representation has its own zero/one representations.
- Now using the fantastic Logilab PyLint program!
- Truth tables now use the awesome stdlib array.array for internal representation.
- Changed the names of almost all Expression sublasses to ExprSomething. the Or/And/Not operators are now functions. This simplified lots of crummy $\qquad$ new $\qquad$ magic.
- Expression instances to not automatically simplify, but they do if you use Or/And/Not/etc with default **kwargs.
- Got rid of constant and binop modules, of dubious value.
- Added is_zero, is_one, box, and unbox to Function interface.
- Removed reduce, iter_zeros, and iter_ones from Function interface.
- Lots of refactoring of SAT methodology.
- Finally implemented unate methods correctly for Expressions.


### 1.10.16 Version 0.12

- Lots of work in pyeda.table:
- Now two classes, TruthTable, and PCTable (for positional-cube format, which allows X outputs).
- Implemented most of the boolfunc.Function API.
- Tables now support -, +, *, and xor operators.
- Using a set container for And/Or/Xor argument simplification results in about $30 \%$ speedup of unit tests.
- Renamed boolfunc.iter_space to boolfunc.iter_points.
- New boolfunc.iter_terms generator.
- Changed $\operatorname{dnf} f=$ True to $\operatorname{con} f=F a l$ se on several methods that give the option of returnin an expression in conjunctive or disjunctive form.
- Added con $j=F a l$ se argument to all expression factor methods.
- New Function.iter_domain and Function.iter_image iterators.
- Renamed Function.iter_outputs to Function.iter_relation.
- Add pyeda. alphas module for a convenience way to grab all the $a, b, c, d, \ldots$ variables.
- Xor. factor now returns a flattened form, instead of nested.


### 1.10.17 Version 0.11

Release 0.11.1

- Fixed bug \#16: Function. reduce only implemented by Variable


## Release 0.11.0

- In pyeda. dimacs changed parse_cnf method name to load_cnf
- In pyeda. dimacs changed parse_sat method name to load_sat
- In pyeda. dimacs added new method dump_cnf, to convert expressions to CNF-formatted strings.
- In pyeda. dimacs added new method dump_sat, to convert expressions to SAT-formatted strings.
- Variables now have a qual name attribute, to allow referencing a variable either by its local name or its fullyqualified name.
- Function gained a reduce method, to provide a standard interface to reduce Boolean function implementations to their canonical forms.
- Expressions gained a simplify parameter, to allow constructing unsimplified expressions.
- Expressions gained an expand method, to implement Shannon expansion.
- New if-then-else (ITE) expression type.
- NormalForm expressions now both support - , + , and $\star$ operators.


### 1.11 Reference

### 1.11.1 pyeda.util - Utilities

The pyeda.util module contains top-level utilities, such as fundamental functions and decorators. Interface Functions:

- bit_on () - Return the value of a number's bit position
- clog2 () - Return the ceiling log base two of an integer
- parity () - Return the parity of an integer

Decorators:

- cached_property()


## Interface Functions

pyeda.util.bit_on (num: int, bit: int) $\rightarrow$ int
Return the value of a number's bit position.
For example, since $42=2^{1}+2^{3}+2^{5}$, this function will return 1 in bit positions $1,3,5$ :
>>> [bit_on(42, i) for i in range(clog2(42))]
$[0,1,0,1,0,1]$
pyeda.util.clog2 (num: int) $\rightarrow$ int
Return the ceiling $\log$ base two of an integer $\geq 1$.
This function tells you the minimum dimension of a Boolean space with at least N points.
For example, here are the values of $\mathrm{c} \log 2$ ( N ) for $1 \leq N<18$ :
$\ggg[c \log 2(n)$ for $n$ in range (1, 18)]
$[0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5]$
This function is undefined for non-positive integers:
>>> clog2(0)
Traceback (most recent call last):
...
ValueError: expected num >= 1
pyeda.util.parity (num: int) $\rightarrow$ int
Return the parity of a non-negative integer.
For example, here are the parities of the first ten integers:
>>> [parity( n ) for n in range(10)]
$[0,1,1,0,1,0,0,1,1,0]$
This function is undefined for negative integers:

```
>>> parity(-1)
Traceback (most recent call last):
 ...
 ValueError: expected num >= 0
```


## Decorators

pyeda.util.cached_property (func)
Return a cached property calculated by the input function.
Unlike the property decorator builtin, this decorator will cache the return value in order to avoid repeated calculations. This is particularly useful when the property involves some non-trivial computation.

For example, consider a class that models a right triangle. The hypotenuse c will only be calculated once.

```
import math
 class RightTriangle:
 def __init__(self, a, b):
```

```
 self.a = a
 self.b = b
@cached_property
def c(self):
 return math.sqrt(self.a**2 + self.b**2)
```


### 1.11.2 pyeda.boolalg.boolfunc - Boolean Functions

The pyeda.boolalg.boolfunc module implements the fundamentals of Boolean space, variables and functions. Data Types:
point A dictionary of Variable $=>\{0,1\}$ mappings. For example, $\{\mathrm{a}: \quad 0, \mathrm{~b}: 1, \mathrm{c}: \quad 0, \mathrm{~d}: 1\}$. An N-dimensional point corresponds to one vertex of an N -dimensional cube.
untyped point An untyped, immutable representation of a point, represented as (frozenset([int]), frozenset ([int])). The integers are Variable uniqids. Index zero contains a frozenset of variables mapped to zero, and index one contains a frozenset of variables mapped to one. This representation is easier to manipulate than the point, and it is hashable for caching purposes.
term A tuple of $N$ Boolean functions, intended to be used as the input of either an OR or AND function. An OR term is called a maxterm (product of sums), and an AND term is called a minterm (sum of products).

Interface Functions:

- num2point () - Convert an integer into a point in an N-dimensional Boolean space.
- num2upoint () - Convert an integer into an untyped point in an N-dimensional Boolean space.
- num2term () - Convert an integer into a min/max term in an N-dimensional Boolean space.
- point2upoint () - Convert a point into an untyped point.
- point2term () - Convert a point into a min/max term.
- iter_points () - Iterate through all points in an N -dimensional Boolean space.
- iter_upoints () - Iterate through all untyped points in an N-dimensional Boolean space.
- iter_terms () - Iterate through all min/max terms in an N -dimensional Boolean space.
- vpoint2point () - Convert a vector point into a point in an N-dimensional Boolean space.

Interface Classes:

- Variable
- Function


## Interface Functions

pyeda.boolalg.boolfunc.num2point (num, vs)
Convert num into a point in an N -dimensional Boolean space.
The $v s$ argument is a sequence of $N$ Boolean variables. There are $2^{N}$ points in the corresponding Boolean space. The dimension number of each variable is its index in the sequence.

The num argument is an int in range $\left[0,2^{N}\right)$.
For example, consider the 3-dimensional space formed by variables $a, b, c$. Each vertex corresponds to a 3dimensional point as summarized by the table:


Note: The a b c column is the binary representation of num written in little-endian order.
pyeda.boolalg.boolfunc.num2upoint (num, vs)
Convert num into an untyped point in an N -dimensional Boolean space.
The $v s$ argument is a sequence of $N$ Boolean variables. There are $2^{N}$ points in the corresponding Boolean space. The dimension number of each variable is its index in the sequence.
The num argument is an int in range $\left[0,2^{N}\right)$.
See num2point () for a description of how num maps onto an N -dimensional point. This function merely converts the output to an immutable (untyped) form.
pyeda.boolalg.boolfunc.num2term (num, fs, conj=False)
Convert num into a min/max term in an N-dimensional Boolean space.
The $f s$ argument is a sequence of $N$ Boolean functions. There are $2^{N}$ points in the corresponding Boolean space. The dimension number of each function is its index in the sequence.
The num argument is an int in range $\left[0,2^{N}\right)$.
If conj is False, return a minterm. Otherwise, return a maxterm.
For example, consider the 3-dimensional space formed by functions $f, g, h$. Each vertex corresponds to a $\mathrm{min} / \mathrm{max}$ term as summarized by the table:


Note: The $f \mathrm{~g} \mathrm{~h}$ column is the binary representation of num written in little-endian order.
pyeda.boolalg.boolfunc.point2upoint (point)
Convert point into an untyped point.
pyeda.boolalg.boolfunc.point2term (point, conj=False)
Convert point into a min/max term.

If conj is False, return a minterm. Otherwise, return a maxterm.
pyeda.boolalg.boolfunc.iter_points (vs)
Iterate through all points in an N -dimensional Boolean space.
The $v s$ argument is a sequence of $N$ Boolean variables.
pyeda.boolalg.boolfunc.iter_upoints (vs)
Iterate through all untyped points in an N-dimensional Boolean space.
The $v s$ argument is a sequence of $N$ Boolean variables.
pyeda.boolalg.boolfunc.iter_terms ( $f s$, conj=False)
Iterate through all min/max terms in an N-dimensional Boolean space.
The $f s$ argument is a sequence of $N$ Boolean functions.
If conj is False, yield minterms. Otherwise, yield maxterms.
pyeda.boolalg.boolfunc.vpoint2point (vpoint)
Convert vpoint into a point in an N-dimensional Boolean space.
The vpoint argument is a mapping from multi-dimensional arrays of variables to matching arrays of 0,1 . Elements from the values array will be converted to 0,1 using the int builtin function.

For example:

```
>>> from pyeda.boolalg.expr import exprvar
>>> a = exprvar('a')
>>> b00, b01, b10, b11 = map(exprvar, "b00 b01 b10 b11".split())
>>> vpoint = {a: 0, ((b00, b01), (b10, b11)): ["01", "01"]}
>>> point = vpoint2point(vpoint)
>>> point[a], point[b00], point[b01], point[b10], point[b11]
 (0, 0, 1, 0, 1)
```

The vpoint mapping is more concise if B is an farray:

```
>>> from pyeda.boolalg.expr import exprvar
>>> from pyeda.boolalg.bfarray import exprvars
>>> a = exprvar('a')
>>> B = exprvars('m', 2, 2)
>>> vpoint = {a: 0, B: ["01", "01"]}
>>> point = vpoint2point(vpoint)
>>> point[a], point[B[0,0]], point[B[0,1]], point[B[1,0]], point[B[1,1]]
(0, 0, 1, 0, 1)
```

The shape of the array must match the shape of its values:

```
>>> from pyeda.boolalg.bfarray import exprvars
>>> X = exprvars('x', 2, 2)
>>> vpoint = {x: "0101"}
>>> point = vpoint2point(vpoint)
Traceback (most recent call last):
ValueError: expected 1:1 mapping from Variable => {0, 1}
```


## Interface Classes

```
class pyeda.boolalg.boolfunc.Variable (names, indices)
```

Base class for a symbolic Boolean variable.
A Boolean variable is an abstract numerical quantity that may assume any value in the set $B=\{0,1\}$.

Note: Do NOT instantiate a Variable directly. Instead, use one of the concrete implementations: pyeda.boolalg.bdd.bddvar() pyeda.boolalg.expr.exprvar(), pyeda.boolalg.table.ttvar().

A variable is defined by one or more names, and zero or more indices. Multiple names establish hierarchical namespaces, and multiple indices group several related variables.
Each variable has a unique, positive integer called the uniqid. This integer may be used to identify a variable that is represented by more than one data structure. For example, bddvar ('a', 0) and exprvar ('a', 0 ) will refer to two different Variable instances, but both will share the same uniqid.

All variables are implicitly ordered. If two variable names are identical, compare their indices. Otherwise, do a string comparison of their names. This is only useful where variable order matters, and is not meaningful in any algebraic sense.

For example, the following statements are true:

$$
\cdot \mathrm{a}==\mathrm{a}
$$

- $\mathrm{a}<\mathrm{b}$
$\cdot a[0]<a[1]$
-a[0][1] < a[0][2]
name
Return the innermost variable name.
qualname
Return the fully qualified name.
class pyeda.boolalg.boolfunc. Function
Abstract base class that defines an interface for a symbolic Boolean function of $N$ variables.
invert ()

Boolean negation operator

| $f$ | $f^{\prime}$ |
| :--- | :--- |
| 0 | 1 |
| 1 | 0 |

__or__(g)
Boolean disjunction (sum, OR) operator

| $f$ | $g$ | $f+g$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

__and__( $g$ )
Boolean conjunction (product, AND) operator

| $f$ | $g$ | $f \cdot g$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

_xor__(g)
Boolean exclusive or (XOR) operator

| $f$ | $g$ | $f \oplus g$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

$\qquad$ add (other)
Concatenation operator
The other argument may be a Function or an farray.
$\qquad$ (num)
Repetition operator

## support

Return the support set of a function.
Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a Boolean function of $N$ variables.
The unordered set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is called the support of the function.

## usupport

Return the untyped support set of a function.

## inputs

Return the support set in name/index order.

## top

Return the first variable in the ordered support set.

## degree

Return the degree of a function.
A function from $B^{N} \Rightarrow B$ is called a Boolean function of degree $N$.

## cardinality

Return the cardinality of the relation $B^{N} \Rightarrow B$.
Always equal to $2^{N}$.
iter_domain()
Iterate through all points in the domain.
iter_image()
Iterate through all elements in the image.
iter_relation()
Iterate through all (point, element) pairs in the relation.
restrict (point)
Restrict a subset of support variables to $\{0,1\}$.
Returns a new function: $f\left(x_{i}, \ldots\right)$
$f \mid x_{i}=b$
vrestrict (vpoint)
Expand all vectors in vpoint before applying restrict.
compose (mapping)
Substitute a subset of support variables with other Boolean functions.
Returns a new function: $f\left(g_{i}, \ldots\right)$
$f_{1} \mid x_{i}=f_{2}$

```
satisfy_one()
```

If this function is satisfiable, return a satisfying input point. A tautology may return a zero-dimensional point; a contradiction must return None.

```
satisfy_all()
```

Iterate through all satisfying input points.

```
satisfy_count()
```

Return the cardinality of the set of all satisfying input points.
iter_cofactors ( $v s=$ None)
Iterate through the cofactors of a function over N variables.
The $v s$ argument is a sequence of $N$ Boolean variables.
The cofactor of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable $x_{i}$ is: $f_{x_{i}}=f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$
The cofactor of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable $x_{i}^{\prime}$ is: $f_{x_{i}^{\prime}}=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right)$
cofactors ( $v s=$ None)
Return a tuple of the cofactors of a function over N variables.
The vs argument is a sequence of $N$ Boolean variables.
The cofactor of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable $x_{i}$ is: $f_{x_{i}}=f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$
The cofactor of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable $x_{i}^{\prime}$ is: $f_{x_{i}^{\prime}}=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right)$
smoothing ( $v s=$ None)
Return the smoothing of a function over a sequence of N variables.
The vs argument is a sequence of $N$ Boolean variables.
The smoothing of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable $x_{i}$ is: $S_{x_{i}}(f)=f_{x_{i}}+f_{x_{i}^{\prime}}$
This is the same as the existential quantification operator: $\exists\left\{x_{1}, x_{2}, \ldots\right\} f$
consensus ( $v s=$ None)
Return the consensus of a function over a sequence of N variables.
The vs argument is a sequence of $N$ Boolean variables.
The consensus of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable $x_{i}$ is: $C_{x_{i}}(f)=f_{x_{i}} \cdot f_{x_{i}^{\prime}}$
This is the same as the universal quantification operator: $\forall\left\{x_{1}, x_{2}, \ldots\right\} f$

## derivative ( $v s=$ None)

Return the derivative of a function over a sequence of N variables.
The vs argument is a sequence of $N$ Boolean variables.
The derivative of $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$ with respect to variable $x_{i}$ is: $\frac{\partial}{\partial x_{i}} f=f_{x_{i}} \oplus f_{x_{i}^{\prime}}$
This is also known as the Boolean difference.
is_zero()
Return whether this function is zero.

Note: This method will only look for a particular "zero form", and will NOT do a full search for a contradiction.

## is_one()

Return whether this function is one.
Note: This method will only look for a particular "one form", and will NOT do a full search for a
tautology.

## static box (obj)

Convert primitive types to a Function.
unbox ()
Return integer 0 or 1 if possible, otherwise return the Function.

### 1.11.3 pyeda.boolalg.bdd - Binary Decision Diagrams

The pyeda.boolalg.bodd module implements Boolean functions represented as binary decision diagrams.
Interface Functions:

- bddvar () - Return a unique BDD variable
- expr2bdd () - Convert an expression into a binary decision diagram
- bdd2expr () - Convert a binary decision diagram into an expression
- upoint2bddpoint () - Convert an untyped point into a BDD point
- ite () — BDD if-then-else operator

Interface Classes:

- BDDNode
- BinaryDecisionDiagram
- BDDConstant
- BDDVariable


## Interface Functions

pyeda.boolalg.bdd.bddvar (name, index=None)
Return a unique BDD variable.
A Boolean variable is an abstract numerical quantity that may assume any value in the set $B=\{0,1\}$. The bddvar function returns a unique Boolean variable instance represented by a binary decision diagram. Variable instances may be used to symbolically construct larger BDDs.
A variable is defined by one or more names, and zero or more indices. Multiple names establish hierarchical namespaces, and multiple indices group several related variables. If the name parameter is a single str, it will be converted to (name, ). The index parameter is optional; when empty, it will be converted to an empty tuple (). If the index parameter is a single int, it will be converted to (index, ).

Given identical names and indices, the bddvar function will always return the same variable:

```
>>> bddvar('a', 0) is bddvar('a', 0)
True
```

To create several single-letter variables:

```
>>> a, b, c, d = map(boddvar, ' abocd')
```

To create variables with multiple names (inner-most first):

```
>>> fifo_push = bddvar(('push', 'fifo'))
>>> fifo_pop = bddvar(('pop', 'fifo'))
```


## See also:

For creating arrays of variables with incremental indices, use the pyeda.boolalg.bfarray.bddvars () function.
pyeda.boolalg.bdd. expr2bdd (expr)
Convert an expression into a binary decision diagram.
pyeda.boolalg.bdd.bdd2expr (bdd, conj=False)
Convert a binary decision diagram into an expression.
This function will always return an expression in two-level form. If conj is False, return a sum of products (SOP). Otherwise, return a product of sums (POS).

For example:
$\ggg \mathrm{a}, \mathrm{b}=\operatorname{map}\left(\mathrm{bddvar}, \quad\right.$ ' $\left.\mathrm{ab} \mathrm{b}^{\prime}\right)$
>>> bdd2expr (~a | b)
Or (~a, And (a, b))
pyeda.boolalg.bdd.upoint2bddpoint (upoint)
Convert an untyped point into a BDD point.

## See also:

For definitions of points and untyped points, see the pyeda.boolalg.boolfunc module.
pyeda.boolalg.bdd.ite $(f, g, h)$
BDD if-then-else (ITE) operator
The $f, g$, and $h$ arguments are BDDs.
The $\operatorname{ITE}(\mathrm{f}, \mathrm{g}, \mathrm{h})$ operator means "if $f$ is true, return $g$, else return $h$ ".
It is equivalent to:
-DNF form: $f \& g \mid \sim f \& h$
-CNF form: ( $\sim \mathrm{f} \mid \mathrm{g}) ~ \& ~(\mathrm{f} \mid \mathrm{h})$

Interface Classes
class pyeda.boolalg.bdd. BDDNode (root, lo, hi)
Binary decision diagram node
A BDD node represents one cofactor in the decomposition of a Boolean function. Nodes are uniquely identified by a root integer, lo child node, and hi child node:
-root is the cofactor variable's uniqid attribute
-lo is the zero cofactor node
-hi is the one cofactor node
The root of the zero node is -1 , and the root of the one node is -2 . Both zero/one nodes have $10=$ None and hi=None.

Do NOT create BDD nodes using the BDDNode constructor. BDD node instances are managed internally.
class pyeda.boolalg.bdd.BinaryDecisionDiagram (node)
Boolean function represented by a binary decision diagram

## See also:

This is a subclass of pyeda.boolalg.boolfunc.Function

BDDs have a single attribute, node, that points to a node in the managed unique table.
There are two ways to construct a BDD:
-Convert an expression using the expr2bdd function.

- Use operators on existing BDDs.

Use the bddvar function to create BDD variables, and use the Python $\sim \mid \&^{\wedge}$ operators for NOT, OR, AND, XOR.

For example:

```
>>> a, b, c, d = map(bddvar, 'abcd')
>>> f = ~a | b & c ^ d
```

The BinaryDecisionDiagram class is useful for type checking, e.g. isinstance(f, BinaryDecisionDiagram).
Do NOT create a BDD using the BinaryDecisionDiagram constructor. BDD instances are managed internally, and you will not be able to use the Python is operator to establish formal equivalence with manually constructed BDDs.

## dfs_preorder()

Iterate through nodes in depth first search (DFS) pre-order.
dfs_postorder()
Iterate through nodes in depth first search (DFS) post-order.
bfs ()
Iterate through nodes in breadth first search (BFS) order.
equivalent (other)
Return whether this BDD is equivalent to other.
You can also use Python's is operator for BDD equivalency testing.
For example:

```
>>> a, b, c = map(bddvar, ' abc')
>>> f1 = a ^ b ^ c
>>> f2 = a& ~b & ~c | ~a & b & ~c | ~a & ~b & c | a & b & c
>>> f1 is f2
True
to_dot (name='BDD')
 Convert to DOT language representation.
```

See the DOT language reference for details.
class pyeda.boolalg.bdd. BDDConstant (node, value)
Binary decision diagram constant zero/one
The BDDConstant class is useful for type checking, e.g. isinstance (f, BDDConstant).
Do NOT create a BDD using the BDDConstant constructor. BDD instances are managed internally, and the BDD zero/one instances are singletons.
class pyeda.boolalg.bdd.BDDVariable (bvar)
Binary decision diagram variable
The BDDVariable class is useful for type checking, e.g. isinstance (f, BDDVariable).
Do NOT create a BDD using the BDDVariable constructor. Use the boddvar () function instead.

### 1.11.4 pyeda.boolalg. expr — Expressions

The pyeda.boolalg.expr module implements Boolean functions represented as expressions.
Data Types:
abstract syntax tree A nested tuple of entries that represents an expression. It is defined recursively:

```
ast := ('const', bool)
 | ('lit', uniqid)
 | (nary, ast, ...)
 | ('not', ast)
 | ('impl', ast, ast)
 | ('ite', ast, ast, ast)
bool := 0 | 1
uniqid := nonzero int
nary := 'or'
 | 'and'
 | 'xor'
 | 'eq'
```

Interface Functions:

- exprvar () - Return a unique Expression variable
- expr () - Convert an arbitrary object into an Expression
- ast2expr () - Convert an abstract syntax tree to an Expression
- expr2dimacscnf() - Convert an expression into an equivalent DIMACS CNF
- upoint2exprpoint () - Convert an untyped point into an Expression point
- Not () - Expression negation operator
- Or () - Expression disjunction (sum, OR) operator
- And () - Expression conjunction (product, AND) operator
- Xor () - Expression exclusive or (XOR) operator
- Equal () — Expression equality operator
- Implies () - Expression implication operator
- ITE () — Expression If-Then-Else (ITE) operator
- Nor () — Expression NOR (not OR) operator
- Nand () - Expression NAND (not AND) operator
- Xnor () - Expression XNOR (not XOR) operator
- Unequal () — Expression inequality (not EQUAL) operator
- OneHoto ()
- OneHot()
- Majority()
- AchillesHeel()
- Mux()

Interface Classes:

- Expression
- Atom
* Constant
- Zero
- One
* Literal
- Complement
- Variable
- Operator
* NaryOp
- Orop
- Andop
- XorOp
- Equalop
* NotOp
* ImpliesOp
* IfThenElseOp
- NormalForm
- DisjNormalForm
- ConjNormalForm
* DimacsCNF


## Interface Functions

## pyeda.boolalg.expr.exprvar (name, index=None)

Return a unique Expression variable.
A Boolean variable is an abstract numerical quantity that may assume any value in the set $B=\{0,1\}$. The exprvar function returns a unique Boolean variable instance represented by a logic expression. Variable instances may be used to symbolically construct larger expressions.
A variable is defined by one or more names, and zero or more indices. Multiple names establish hierarchical namespaces, and multiple indices group several related variables. If the name parameter is a single str, it will be converted to (name, ). The index parameter is optional; when empty, it will be converted to an empty tuple (). If the index parameter is a single int, it will be converted to (index, ).
Given identical names and indices, the exprvar function will always return the same variable:

```
>>> exprvar('a', 0) is exprvar('a', 0)
True
```

To create several single-letter variables:
>>> $a, b, c, d=\operatorname{map}(e x p r v a r, \quad$ 'abcd')
To create variables with multiple names (inner-most first):

```
>>> fifo_push = exprvar(('push', 'fifo'))
>>> fifo_pop = exprvar(('pop', 'fifo'))
```


## See also:

For creating arrays of variables with incremental indices, use the pyeda.boolalg.bfarray.exprvars() function.

```
pyeda.boolalg.expr.expr (obj, simplify=True)
```

Convert an arbitrary object into an Expression.

```
pyeda.boolalg.expr.ast2expr (ast)
```

Convert an abstract syntax tree to an Expression.
pyeda.boolalg.expr.expr2dimacscnf (ex)
Convert an expression into an equivalent DIMACS CNF.
pyeda.boolalg.expr.upoint2exprpoint (upoint)
Convert an untyped point into an Expression point.

## See also:

For definitions of points and untyped points, see the pyeda.boolalg.boolfunc module.

## Operators

## Primary Operators

pyeda.boolalg.expr.Not ( $x$, simplify=True)
Expression negation operator
If simplify is True, return a simplified expression. pyeda.boolalg.expr.Or (*xs, simplify=True)

Expression disjunction (sum, OR) operator
If simplify is True, return a simplified expression.
pyeda.boolalg.expr.And (*xs, simplify=True)
Expression conjunction (product, AND) operator
If simplify is True, return a simplified expression.

## Secondary Operators

pyeda.boolalg.expr.Xor (*xs, simplify=True)
Expression exclusive or (XOR) operator
If simplify is True, return a simplified expression.
pyeda.boolalg.expr.Equal ( ${ }^{*} x s$, simplify=True)
Expression equality operator
If simplify is True, return a simplified expression.
pyeda.boolalg.expr.Implies ( $p, q$, simplify=True)
Expression implication operator
If simplify is True, return a simplified expression.
pyeda.boolalg.expr.ITE ( $s, d 1, d 0$, simplify=True $)$
Expression If-Then-Else (ITE) operator
If simplify is True, return a simplified expression.

## High Order Operators

pyeda.boolalg.expr.Nor ( ${ }^{*} x s$, simplify=True)
Expression NOR (not OR) operator
If simplify is True, return a simplified expression.
pyeda.boolalg.expr.Nand (*xs, simplify=True)
Expression NAND (not AND) operator
If simplify is True, return a simplified expression.
pyeda.boolalg.expr.Xnor (*xs, simplify=True)
Expression exclusive nor (XNOR) operator
If simplify is True, return a simplified expression.
pyeda.boolalg.expr.Unequal (*xs, simplify=True)
Expression inequality operator
If simplify is True, return a simplified expression.
pyeda.boolalg.expr.OneHoto (*xs, simplify=True, conj=True)
Return an expression that means "at most one input function is true".
If simplify is True, return a simplified expression.
If conj is True, return a CNF. Otherwise, return a DNF.
pyeda.boolalg.expr.OneHot ( ${ }^{\text {xss, simplify }=\text { True, conj=True) }}$
Return an expression that means "exactly one input function is true".
If simplify is True, return a simplified expression.
If conj is True, return a CNF. Otherwise, return a DNF.
pyeda.boolalg.expr.Majority ( ${ }^{*} x s$, simplify=True, conj=False)
Return an expression that means "the majority of input functions are true".
If simplify is True, return a simplified expression.
If conj is True, return a CNF. Otherwise, return a DNF.
pyeda.boolalg.expr.AchillesHeel (*xs, simplify=True)
Return the Achille's Heel function, defined as: $\prod_{i=0}^{n / 2-1} X_{2 i}+X_{2 i+1}$.
If simplify is True, return a simplified expression.
pyeda.boolalg.expr.Mux (fs, sel, simplify=True)
Return an expression that multiplexes a sequence of input functions over a sequence of select functions.

## Interface Classes

## Expression Tree Nodes

class pyeda.boolalg.expr.Expression (node)
Boolean function represented by a logical expression
See also:

This is a subclass of pyeda.boolalg.boolfunc.Function
The Expression class is useful for type checking, e.g. isinstance(f, Expression).
Do NOT create an Expression using the Expression constructor.

```
to_ast()
```

Convert this node to an abstract syntax tree.
depth
Return the depth of the expression.
Expression depth is defined recursively:
1.An atom node (constant or literal) has zero depth.
2.A branch node (operator) has depth equal to the maximum depth of its children (arguments) plus one.

```
simplify()
```

Return a simplified expression.
simple
Return True if the expression has been simplified.
to_nnf()
Return an equivalent expression is negation normal form.
to_dnf()
Return an equivalent expression in disjunctive normal form.
to_cnf()
Return an equivalent expression in conjunctive normal form.
complete_sum ()
Return an equivalent DNF expression that includes all prime implicants.
expand ( $v s=$ None, conj=False)
Return the Shannon expansion with respect to a list of variables.
cover
Return the DNF expression as a cover of cubes.
encode_inputs()
Return a compact encoding for input variables.
encode_dnf()
Encode as a compact DNF.
encode_cnf()
Encode as a compact CNF.
tseitin (auxvarname='aux')
Convert the expression to Tseitin's encoding.
equivalent (other)
Return True if this expression is equivalent to other.
to_dot ( $n a m e=$ 'EXPR')
Convert to DOT language representation.
class pyeda.boolalg.expr.Atom (node)
Atom Expression
class pyeda.boolalg.expr.Constant (node)
Constant Expression

```
class pyeda.boolalg.expr.Literal (node)
 Literal Expression
class pyeda.boolalg.expr.Complement (node)
 Complement Expression
class pyeda.boolalg.expr.Variable(bvar)
 Variable Expression
class pyeda.boolalg.expr.Operator(node)
 Operator Expression
class pyeda.boolalg.expr.NaryOp(node)
 Operator with N arguments
class pyeda.boolalg.expr.OrAndOp (node)
 Either an OR or AND operator (a lattice op)
class pyeda.boolalg.expr.OrOp (node)
 OR Operator
class pyeda.boolalg.expr.AndOp(node)
 AND Operator
class pyeda.boolalg.expr.XorOp(node)
 XOR Operator
class pyeda.boolalg.expr.EqualOp (node)
 Equal Operator
class pyeda.boolalg.expr.NotOp(node)
 NOT Operator
class pyeda.boolalg.expr.ImpliesOp (node)
 Implies Operator
class pyeda.boolalg.expr.IfThenElseOp (node)
 If-Then-Else (ITE) Operator
```


## Normal Forms

```
class pyeda.boolalg.expr.NormalForm (nvars, clauses)
Normal form expression
class pyeda.boolalg.expr.DisjNormalForm (nvars, clauses)
Disjunctive normal form expression
class pyeda.boolalg.expr.ConjNormalForm (nvars, clauses)
Conjunctive normal form expression
class pyeda.boolalg.expr.DimacsCNF (nvars, clauses)
Wrapper class for a DIMACS CNF representation
```


### 1.11.5 pyeda.boolalg.bfarray - Boolean Function Arrays

The pyeda.boolalg.bfarray module implements multi-dimensional arrays of Boolean functions.
Interface Functions:

- bddzeros () - Return a multi-dimensional array of BDD zeros
- bddones () - Return a multi-dimensional array of BDD ones
- bddvars () - Return a multi-dimensional array of BDD variables
- exprzeros () — Return a multi-dimensional array of expression zeros
- exprones () - Return a multi-dimensional array of expression ones
- exprvars () - Return a multi-dimensional array of expression variables
- ttzeros () - Return a multi-dimensional array of truth table zeros
- ttones () - Return a multi-dimensional array of truth table ones
- ttvars () — Return a multi-dimensional array of truth table variables
- uint 2 bdds() - Convert unsigned num to an array of BDDs
- uint2exprs () - Convert unsigned num to an array of expressions
- uint2tts () - Convert unsigned num to an array of truth tables
- int2bdds () - Convert num to an array of BDDs
- int2exprs () - Convert num to an array of expressions
- int2tts () - Convert num to an array of truth tables
- fcat () - Concatenate a sequence of farrays

Interface Classes:

- farray()


## Interface Functions

pyeda.boolalg.bfarray.bddzeros(*dims)
Return a multi-dimensional array of BDD zeros.
The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index). If a dimension is given as a single int, it will be converted to ( 0 , stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the Python slice convention.

For example, to create a $4 \times 4$ array of BDD zeros:

```
>>> zeros = bddzeros(4, 4)
```

>>> zeros
farray ([ [0, 0, 0, 0],
$[0,0,0,0]$,
$[0,0,0,0]$,
$[0,0,0,0]])$
pyeda.boolalg.bfarray.bddones (*dims)
Return a multi-dimensional array of BDD ones.
The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index). If a dimension is given as a single int, it will be converted to ( 0 , stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the Python slice convention.

For example, to create a $4 \times 4$ array of BDD ones:
$\ggg$ ones $=$ bddones $(4,4)$
>>> ones
farray ([[1, 1, 1, 1],
$[1,1,1,1]$,
$[1,1,1,1]$,
$[1,1,1,1]])$
pyeda.boolalg.bfarray.bddvars (name, *dims)
Return a multi-dimensional array of BDD variables.
The name argument is passed directly to the pyeda.boolalg.bodd.bddvar () function, and may be either a str or tuple of str.

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index). If a dimension is given as a single int, it will be converted to ( 0 , stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the Python slice convention.

For example, to create a $4 \times 4$ array of BDD variables:

```
>>> vs = bddvars('a', 4, 4)
>>> VS
farray([[a[0,0], a[0,1], a[0,2], a[0,3]],
 [a[1,0], a[1,1], a[1,2], a[1,3]],
 [a[2,0], a[2,1], a[2,2], a[2,3]],
 [a[3,0], a[3,1], a[3,2], a[3,3]]])
```

pyeda.boolalg.bfarray.exprzeros (*dims)

## Return a multi-dimensional array of expression zeros.

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index). If a dimension is given as a single int, it will be converted to ( 0 , stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the Python slice convention.

For example, to create a $4 \times 4$ array of expression zeros:

```
>>> zeros = exprzeros(4, 4)
>>> zeros
farray([[0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0]])
```

pyeda.boolalg.bfarray.exprones (*dims)
Return a multi-dimensional array of expression ones.
The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index). If a dimension is given as a single int, it will be converted to ( 0 , stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the Python slice convention.

For example, to create a $4 \times 4$ array of expression ones:

```
>>> ones = exprones(4, 4)
>>> ones
farray([[1, 1, 1, 1],
 [1, 1, 1, 1],
```

$[1,1,1,1]$,
$[1,1,1,1]])$
pyeda.boolalg.bfarray.exprvars (name, *dims)
Return a multi-dimensional array of expression variables.
The name argument is passed directly to the pyeda.boolalg.expr.exprvar() function, and may be either a str or tuple of str.

The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index). If a dimension is given as a single int, it will be converted to ( 0 , stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the Python slice convention.

For example, to create a $4 \times 4$ array of expression variables:

```
>>> vs = exprvars('a', 4, 4)
>>> vS
farray([[a[0,0], a[0,1], a[0,2], a[0,3]],
 [a[1,0], a[1,1], a[1,2], a[1,3]],
 [a[2,0], a[2,1], a[2,2], a[2,3]],
 [a[3,0], a[3,1], a[3,2], a[3,3]]])
```

pyeda.boolalg.bfarray.ttzeros (*dims)

Return a multi-dimensional array of truth table zeros.
The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index). If a dimension is given as a single int, it will be converted to ( 0 , stop).
The dimension starts at index start, and increments by one up to, but not including, stop. This follows the Python slice convention.

For example, to create a $4 \times 4$ array of truth table zeros:
$\ggg$ zeros $=$ ttzeros $(4,4)$
>>> zeros
farray ([ [0, 0, 0, 0],
$[0,0,0,0]$,
$[0,0,0,0]$,
$[0,0,0,0]])$
pyeda.boolalg.bfarray.ttones (*dims)
Return a multi-dimensional array of truth table ones.
The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index). If a dimension is given as a single int, it will be converted to ( 0 , stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the Python slice convention.

For example, to create a $4 \times 4$ array of truth table ones:

```
>>> ones = ttones(4, 4)
>>> ones
farray([[1, 1, 1, 1],
 [1, 1, 1, 1],
 [1, 1, 1, 1],
 [1, 1, 1, 1]])
```

pyeda.boolalg.bfarray.ttvars (name, *dims)

Return a multi-dimensional array of truth table variables.

The name argument is passed directly to the pyeda.boolalg.table.ttvar() function, and may be either a str or tuple of str.
The variadic dims input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index). If a dimension is given as a single int, it will be converted to ( 0 , stop).

The dimension starts at index start, and increments by one up to, but not including, stop. This follows the Python slice convention.

For example, to create a $4 \times 4$ array of truth table variables:

```
>>> vs = ttvars('a', 4, 4)
>>> vS
farray([[a[0,0], a[0,1], a[0,2], a[0,3]],
 [a[1,0], a[1,1], a[1,2], a[1,3]],
 [a[2,0], a[2,1], a[2,2], a[2,3]],
 [a[3,0], a[3,1], a[3,2], a[3,3]]])
```

pyeda.boolalg.bfarray.uint2bdds (num, length=None)
Convert unsigned num to an array of BDDs.
The num argument is a non-negative integer.
If no length parameter is given, the return value will have the minimal required length. Otherwise, the return value will be zero-extended to match length.

For example, to convert the byte 42 (binary 0 b 00101010 ):
>>> uint2bdds (42, 8)
farray ([0, 1, 0, 1, 0, 1, 0, 0])
pyeda.boolalg.bfarray.uint2exprs (num, length=None)
Convert unsigned num to an array of expressions.
The num argument is a non-negative integer.
If no length parameter is given, the return value will have the minimal required length. Otherwise, the return value will be zero-extended to match length.

For example, to convert the byte 42 (binary 0b00101010):
>>> uint2exprs $(42,8)$
farray ([0, 1, 0, $1,0,1,0,0])$
pyeda.boolalg.bfarray.uint2tts (num, length=None)
Convert unsigned num to an array of truth tables.
The num argument is a non-negative integer.
If no length parameter is given, the return value will have the minimal required length. Otherwise, the return value will be zero-extended to match length.

For example, to convert the byte 42 (binary 0 b00101010):
>>> uint2tts $(42,8)$
farray ([0, 1, 0, 1, 0, 1, 0, 0])
pyeda.boolalg.bfarray.int2bdds (num, length=None)
Convert num to an array of BDDs.
The num argument is an int. Negative numbers will be converted using twos-complement notation.
If no length parameter is given, the return value will have the minimal required length. Otherwise, the return value will be sign-extended to match length.

For example, to convert the bytes 42 (binary 0.b00101010), and -42 (binary 0b11010110):
>>> int2bdds $(42,8)$
farray ([0, 1, 0, 1, 0, 1, 0, 0])
>>> int2bdds $(-42,8)$
farray ([0, 1, 1, 0, 1, 0, 1, 1])
pyeda.boolalg.bfarray.int2exprs (num, length=None)
Convert num to an array of expressions.
The num argument is an int. Negative numbers will be converted using twos-complement notation.
If no length parameter is given, the return value will have the minimal required length. Otherwise, the return value will be sign-extended to match length.

For example, to convert the bytes 42 (binary 0b00101010), and -42 (binary 0b11010110):
>>> int2exprs $(42,8)$
farray ([0, 1, 0, 1, 0, 1, 0, 0])
>>> int2exprs $(-42,8)$
farray ([0, 1, 1, 0, 1, 0, 1, 1])
pyeda.boolalg.bfarray.int2tts (num, length=None)
Convert num to an array of truth tables.
The num argument is an int. Negative numbers will be converted using twos-complement notation.
If no length parameter is given, the return value will have the minimal required length. Otherwise, the return value will be sign-extended to match length.
For example, to convert the bytes 42 (binary 0b00101010), and -42 (binary 0b11010110):
>>> int2tts $(42,8)$
farray ([0, 1, 0, 1, 0, 1, 0, 0])
>>> int2tts $(-42,8)$
farray ([0, 1, 1, 0, 1, 0, 1, 1])
pyeda.boolalg.bfarray.fcat (*fs)
Concatenate a sequence of farrays.
The variadic $f s$ input is a homogeneous sequence of functions or arrays.

## Interface Classes

class pyeda.boolalg.bfarray.farray (objs, shape=None, ftype=None)
Multi-dimensional array of Boolean functions
The objs argument is a nested sequence of homogeneous Boolean functions. That is, both $[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}]$ and $[\mathrm{a}, \mathrm{b}]$, [ $c, d]]$ are valid inputs.
The optional shape parameter is a tuple of dimension specs, which are (int, int) tuples. It must match the volume of objs. The shape can always be automatically determined from objs, but you can supply it to automatically reshape a flat input.

The optional ftype parameter is a proper subclass of Function. It must match the homogeneous type of objs. In most cases, ftype can automatically be determined from objs. The one exception is that you must provide ftype for objs=[] (an empty array).

Bit-wise NOT operator
$\qquad$
$\qquad$ (other)
Bit-wise OR operator
__and__(other) Bit-wise AND operator
__xor__(other) Bit-wise XOR operator
__lshift__(obj)
Left shift operator
The obj argument may either be an int, or (int, farray). The int argument is num, and the farray argument is cin.

## See also:

```
 lsh()
```

rshift (obj)
Right shift operator
The obj argument may either be an int, or (int, farray). The int argument is num, and the farray argument is cin.

## See also:

rsh()
__add_ (other)
Concatenation operator
The other argument may be a Function or farray.
__mul__(num) Repetition operator
restrict (point)
Apply the restrict method to all functions.
Returns a new farray.
vrestrict (vpoint)
Expand all vectors in vpoint before applying restrict.
compose (mapping)
Apply the compose method to all functions.
Returns a new farray.
size
Return the size of the array.
The size of a multi-dimensional array is the product of the sizes of its dimensions.
offsets
Return a tuple of dimension offsets.
ndim
Return the number of dimensions.
reshape (*dims)
Return an equivalent farray with a modified shape.
flat
Return a 1D iterator over the farray.

```
to_uint()
```

Convert vector to an unsigned integer, if possible.
This is only useful for arrays filled with zero/one entries.

```
to_int()
```

Convert vector to an integer, if possible.
This is only useful for arrays filled with zero/one entries.
zext (num)
Zero-extend this farray by num bits.
Returns a new farray.

```
sext (num)
```

Sign-extend this farray by num bits.
Returns a new farray.

```
uor()
```

Unary OR reduction operator

```
unor()
```

    Unary NOR reduction operator
    uand ()
Unary AND reduction operator
unand ()
Unary NAND reduction operator
uxor ()
Unary XOR reduction operator
uxnor ()
Unary XNOR reduction operator
lsh (num, cin=None)

Left shift the farray by num places.
The num argument must be a non-negative int.
If the cin farray is provided, it will be shifted in. Otherwise, the carry-in is zero.
Returns a two-tuple (farray fs, farray cout), where $f s$ is the shifted vector, and cout is the "carry out".
Returns a new farray.
rsh (num, cin=None)
Right shift the farray by num places.
The num argument must be a non-negative int.
If the cin farray is provided, it will be shifted in. Otherwise, the carry-in is zero.
Returns a two-tuple (farray fs, farray cout), where $f s$ is the shifted vector, and cout is the "carry out".
Returns a new farray.
arsh (num)
Arithmetically right shift the farray by num places.
The num argument must be a non-negative int.
The carry-in will be the value of the most significant bit.

Returns a new farray.
decode()
Return a $N \rightarrow 2^{N}$ decoder.
Example Truth Table for a 2:4 decoder:

| $A_{1}$ | $A_{0}$ | $D_{3}$ | $D_{2}$ | $D_{1}$ | $D_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 |

### 1.11.6 pyeda.boolalg.minimization - Logic Minimization

The pyeda.boolalg.minimization module contains interface functions for two-level logic minimization.
Interface Functions:

- espresso_exprs()
- espresso_tts()


## Interface Functions

pyeda.boolalg.minimization.espresso_exprs(*exprs)
Return a tuple of expressions optimized using Espresso.
The variadic exprs argument is a sequence of expressions.
For example:
>>> from pyeda.boolalg.expr import exprvar
>>> a, b, c = map (exprvar, ' $a b c^{\prime}$ )
>>> f1 $=$ Or (And ( $\sim a, \sim b, \sim c)$, And ( $\sim a, \sim b, c)$, And $(a, \sim b, c)$, And (a, b, c), And (a, b, $\sim c)$ )
>>> $f 2=\operatorname{Or}(\operatorname{And}(\sim a, \sim b, c)$, And (a, $\sim b, c)$ )
>>> f1m, f2m = espresso_exprs(f1, f2)
>>> f1.size, f1m.size
(21, 10)
>>> f1m.equivalent(f1)
True
>>> f2.size, f2m.size
(9, 3)
>>> f2m.equivalent(f2)
True
pyeda.boolalg.minimization.espresso_tts(*tts)
Return a tuple of expressions optimized using Espresso.
The variadic $t t s$ argument is a sequence of truth tables.
For example:

```
>>> from pyeda.boolalg.bfarray import exprvars
>>> from pyeda.boolalg.table import truthtable
>>> X = exprvars('x', 4)
>>> f1 = truthtable(X, "0000011111------")
>>> f2 = truthtable(X, "0001111100------")
>>> f1m, f2m = espresso_tts(f1, f2)
>>> f1m.equivalent(X[3] | X[0] & X[2] | X[1] & X[2])
```

True
>>> f2m.equivalent(X[2] | X[0] \& X[1])
True

### 1.11.7 pyeda.boolalg.picosat - PicoSAT C Extension

Interface to PicoSAT SAT solver C extension

## Constants

## VERSION

PicoSAT version string

## COPYRIGHT

PicoSAT copyright statement

## Exceptions

## exception picosat.Error

An error happened inside PicoSAT. Examples include initialization errors, and unexpected return codes.

## Interface Functions

satisfy_one (nvars, clauses, assumptions, verbosity=0, default_phase=2, propagation_limit=-1, decision_limit=-1)
If the input CNF is satisfiable, return a satisfying input point. A contradiction will return None.
Parameters
nvars [posint] Number of variables in the CNF
clauses [iter of iter of (nonzero) int] The CNF clauses
assumptions [iter of (nonzero) int] Add assumptions (unit clauses) to the CNF
verbosity [int, optional] Set verbosity level. A verbosity level of 1 and above prints more and more detailed progress reports to stdout.
default_phase : $\{0,1,2,3\}$

## Set default initial phase:

- $0=$ false
- $1=$ true
- 2 = Jeroslow-Wang (default)
- 3 = random
progagation_limit [int] Set a limit on the number of propagations. A negative value sets no propagation limit.
decision_limit [int] Set a limit on the number of decisions. A negative value sets no decision limit.
Returns
tuple of $\{-1,0,1\}$
- -1 : zero
- 0 : dont-care
- 1 : one
satisfy_all (nvars, clauses, verbosity=0, default_phase=2, propagation_limit=-1, decision_limit=-1) Iterate through all satisfying input points.

Parameters
nvars [posint] Number of variables in the CNF
clauses [iter of iter of (nonzero) int] The CNF clauses
verbosity [int, optional] Set verbosity level. A verbosity level of 1 and above prints more and more detailed progress reports to stdout.
default_phase [\{0, 1, 2, 3\}]
Set default initial phase:

- $0=$ false
- $1=$ true
- 2 = Jeroslow-Wang (default)
- 3 = random
progagation_limit [int] Set a limit on the number of propagations. A negative value sets no propagation limit.
decision_limit [int] Set a limit on the number of decisions. A negative value sets no decision limit.
Returns
iter of tuple of $\{-1,0,1\}$
- -1 : zero
- 0 : dont-care
- 1: one


### 1.11.8 pyeda.boolalg.espresso - Espresso C Extension

## Constants

FTYPE
DTYPE
RTYPE

## Exceptions

## exception espresso.Error

An error happened inside Espresso.

## Interface Functions

get_config()
Return a dict of Espresso global configuration values.
set_config(single_expand=0, remove_essential=0, force_irredundant=0, unwrap_onset=0, recompute_onset=0,use_super_gasp=0, skip_make_sparse=0)
Set Espresso global configuration values.
espresso (ninputs, noutputs, cover, intype $=$ FTYPEIDTYPE)
Return a logically equivalent, (near) minimal cost set of product-terms to represent the ON -set and optionally minterms that lie in the DC-set, without containing any minterms of the OFF-set.

Parameters
ninputs [posint] Number of inputs in the implicant in-part vector.
noutputs [posint] Number of outputs in the implicant out-part vector.
cover $[\operatorname{iter}((($ int $),(i n t)))]$ The iterator over multi-output implicants. A multi-output implicant is a pair of row vectors of dimension ninputs, and noutputs, respectively. The input part contains integers in positional cube notation, and the output part contains entries in $\{0,1,2\}$.

- ' 0 ' means 0 for R-type covers, otherwise has no meaning.
- ' 1 ' means 1 for F-type covers, otherwise has no meaning.
- ' 2 ' means "don't care" for D-type covers, otherwise has no meaning.
intype [int] A flag field that indicates the type of the input cover. F-type $=1$, D-type $=2$, R-type $=4$


## Returns

set of implicants in the same format as the input cover

Indices and Tables

- genindex
- modindex
- search


## p

pyeda.boolalg.bdd, 82
pyeda.boolalg.bfarray, 90
pyeda.boolalg.boolfunc, 76
pyeda.boolalg.expr, 85
pyeda.boolalg.minimization, 98
pyeda.util, 74

## Symbols

__add__() (pyeda.boolalg.bfarray.farray method), 96
__add__() (pyeda.boolalg.boolfunc.Function method), 80
__and__() (pyeda.boolalg.bfarray.farray method), 96
__and__() (pyeda.boolalg.boolfunc.Function method), 79
__invert__() (pyeda.boolalg.bfarray.farray method), 95
__invert__() (pyeda.boolalg.boolfunc.Function method), 79
__lshift__() (pyeda.boolalg.bfarray.farray method), 96
__mul__() (pyeda.boolalg.bfarray.farray method), 96
__mul__() (pyeda.boolalg.boolfunc.Function method), 80
__or__() (pyeda.boolalg.bfarray.farray method), 95
__or__() (pyeda.boolalg.boolfunc.Function method), 79
__rshift_() (pyeda.boolalg.bfarray.farray method), 96
__xor__() (pyeda.boolalg.bfarray.farray method), 96
__xor__() (pyeda.boolalg.boolfunc.Function method), 79

## A

AchillesHeel() (built-in function), 31
AchillesHeel() (in module pyeda.boolalg.expr), 88
And() (built-in function), 29
And() (in module pyeda.boolalg.expr), 87
AndOp (class in pyeda.boolalg.expr), 90
arsh() (pyeda.boolalg.bfarray.farray method), 97
ast2expr() (in module pyeda.boolalg.expr), 87
Atom (class in pyeda.boolalg.expr), 89

## B

bdd2expr() (in module pyeda.boolalg.bdd), 83
BDDConstant (class in pyeda.boolalg.bdd), 84
BDDNode (class in pyeda.boolalg.bdd), 83
bddones() (in module pyeda.boolalg.bfarray), 91
bddvar() (in module pyeda.boolalg.bdd), 82
BDDVariable (class in pyeda.boolalg.bdd), 84
bddvars() (in module pyeda.boolalg.bfarray), 92
bddzeros() (in module pyeda.boolalg.bfarray), 91
bfs() (pyeda.boolalg.bdd.BinaryDecisionDiagram method), 84
BinaryDecisionDiagram (class in pyeda.boolalg.bdd), 83
bit_on() (in module pyeda.util), 75
box() (pyeda.boolalg.boolfunc.Function static method), 82

C
cached_property() (in module pyeda.util), 75
cardinality (pyeda.boolalg.boolfunc.Function attribute), 80
$\operatorname{clog} 2()$ (in module pyeda.util), 75
cofactors() (pyeda.boolalg.boolfunc.Function method), 81
Complement (class in pyeda.boolalg.expr), 90
complete_sum() (pyeda.boolalg.expr.Expression method), 89
compose() (pyeda.boolalg.bfarray.farray method), 96
compose() (pyeda.boolalg.boolfunc.Function method), 80
ConjNormalForm (class in pyeda.boolalg.expr), 90
consensus() (pyeda.boolalg.boolfunc.Function method), 81
Constant (class in pyeda.boolalg.expr), 89
COPYRIGHT (built-in variable), 99
cover (pyeda.boolalg.expr.Expression attribute), 89

## D

decode() (pyeda.boolalg.bfarray.farray method), 98 degree (pyeda.boolalg.boolfunc.Function attribute), 80
depth (pyeda.boolalg.expr.Expression attribute), 89
derivative() (pyeda.boolalg.boolfunc.Function method), 81
dfs_postorder() (pyeda.boolalg.bdd.BinaryDecisionDiagram method), 84
dfs_preorder() (pyeda.boolalg.bdd.BinaryDecisionDiagram method), 84
DimacsCNF (class in pyeda.boolalg.expr), 90
DisjNormalForm (class in pyeda.boolalg.expr), 90
DTYPE (built-in variable), 100
$E$
encode_cnf() (pyeda.boolalg.expr.Expression method), 89
encode_dnf() (pyeda.boolalg.expr.Expression method), 89
encode_inputs() (pyeda.boolalg.expr.Expression iter_image() (pyeda.boolalg.boolfunc.Function method), method), 89
Equal() (built-in function), 30
Equal() (in module pyeda.boolalg.expr), 87
EqualOp (class in pyeda.boolalg.expr), 90
equivalent() (pyeda.boolalg.bdd.BinaryDecisionDiagram method), 84
equivalent() (pyeda.boolalg.expr.Expression method), 89 espresso() (built-in function), 101
espresso.Error, 100
espresso_exprs() (in module pyeda.boolalg.minimization), 98
espresso_tts() (in module pyeda.boolalg.minimization), 98
expand() (pyeda.boolalg.expr.Expression method), 89
expr() (built-in function), 31
expr() (in module pyeda.boolalg.expr), 87
expr2bdd() (in module pyeda.boolalg.bdd), 83
expr2dimacsenf() (in module pyeda.boolalg.expr), 87
Expression (class in pyeda.boolalg.expr), 88
exprones() (in module pyeda.boolalg.bfarray), 92
exprvar() (in module pyeda.boolalg.expr), 86
exprvars() (in module pyeda.boolalg.bfarray), 93
exprzeros() (in module pyeda.boolalg.bfarray), 92

## F

farray (class in pyeda.boolalg.bfarray), 95
fcat() (in module pyeda.boolalg.bfarray), 95
flat (pyeda.boolalg.bfarray.farray attribute), 96
FTYPE (built-in variable), 100
Function (class in pyeda.boolalg.boolfunc), 79

## G

get_config() (built-in function), 101

## I

IfThenElseOp (class in pyeda.boolalg.expr), 90
Implies() (built-in function), 30
Implies() (in module pyeda.boolalg.expr), 87
ImpliesOp (class in pyeda.boolalg.expr), 90
inputs (pyeda.boolalg.boolfunc.Function attribute), 80
int2bdds() (in module pyeda.boolalg.bfarray), 94
int2exprs() (in module pyeda.boolalg.bfarray), 95
int2tts() (in module pyeda.boolalg.bfarray), 95
is_one() (pyeda.boolalg.boolfunc.Function method), 81
is_zero() (pyeda.boolalg.boolfunc.Function method), 81
ITE() (built-in function), 30
ite() (in module pyeda.boolalg.bdd), 83
ITE() (in module pyeda.boolalg.expr), 87
iter_cofactors() (pyeda.boolalg.boolfunc.Function method), 81
iter_domain() (pyeda.boolalg.boolfunc.Function
method), 80

80
iter_points() (in module pyeda.boolalg.boolfunc), 78
iter_relation() (pyeda.boolalg.boolfunc.Function method), 80
iter_terms() (in module pyeda.boolalg.boolfunc), 78
iter_upoints() (in module pyeda.boolalg.boolfunc), 78

## L

Literal (class in pyeda.boolalg.expr), 89
lsh() (pyeda.boolalg.bfarray.farray method), 97
M
Majority() (built-in function), 31
Majority() (in module pyeda.boolalg.expr), 88
Mux() (built-in function), 31
Mux() (in module pyeda.boolalg.expr), 88

## N

name (pyeda.boolalg.boolfunc.Variable attribute), 79
Nand() (built-in function), 30
Nand() (in module pyeda.boolalg.expr), 88
NaryOp (class in pyeda.boolalg.expr), 90
ndim (pyeda.boolalg.bfarray.farray attribute), 96
Nor() (built-in function), 30
Nor() (in module pyeda.boolalg.expr), 88
NormalForm (class in pyeda.boolalg.expr), 90
$\operatorname{Not}()$ (built-in function), 29
$\operatorname{Not}()$ (in module pyeda.boolalg.expr), 87
NotOp (class in pyeda.boolalg.expr), 90
num2point() (in module pyeda.boolalg.boolfunc), 76
num2term() (in module pyeda.boolalg.boolfunc), 77
num2upoint() (in module pyeda.boolalg.boolfunc), 77

## 0

offsets (pyeda.boolalg.bfarray.farray attribute), 96
OneHot() (built-in function), 30
OneHot() (in module pyeda.boolalg.expr), 88
OneHot0() (built-in function), 30
OneHot0() (in module pyeda.boolalg.expr), 88
Operator (class in pyeda.boolalg.expr), 90
Or() (built-in function), 29
Or() (in module pyeda.boolalg.expr), 87
OrAndOp (class in pyeda.boolalg.expr), 90
OrOp (class in pyeda.boolalg.expr), 90

## P

parity() (in module pyeda.util), 75
picosat.Error, 99
point2term() (in module pyeda.boolalg.boolfunc), 77
point2upoint() (in module pyeda.boolalg.boolfunc), 77
pyeda.boolalg.bdd (module), 82
pyeda.boolalg.bfarray (module), 90
pyeda.boolalg.boolfunc (module), 76
pyeda.boolalg.expr (module), 85
pyeda.boolalg.minimization (module), 98
pyeda.util (module), 74

## Q

qualname (pyeda.boolalg.boolfunc.Variable attribute), 79

## R

reshape() (pyeda.boolalg.bfarray.farray method), 96
restrict() (pyeda.boolalg.bfarray.farray method), 96
restrict() (pyeda.boolalg.boolfunc.Function method), 80 rsh() (pyeda.boolalg.bfarray.farray method), 97
RTYPE (built-in variable), 100

## S

satisfy_all() (built-in function), 100
satisfy_all() (pyeda.boolalg.boolfunc.Function method), 81
satisfy_count() (pyeda.boolalg.boolfunc.Function method), 81
satisfy_one() (built-in function), 99
satisfy_one() (pyeda.boolalg.boolfunc.Function method), 80
set_config() (built-in function), 101
sext() (pyeda.boolalg.bfarray.farray method), 97
simple (pyeda.boolalg.expr.Expression attribute), 89
simplify() (pyeda.boolalg.expr.Expression method), 89
size (pyeda.boolalg.bfarray.farray attribute), 96
smoothing() (pyeda.boolalg.boolfunc.Function method), 81
support (pyeda.boolalg.boolfunc.Function attribute), 80

## T

to_ast() (pyeda.boolalg.expr.Expression method), 89
to_cnf() (pyeda.boolalg.expr.Expression method), 89
to_dnf() (pyeda.boolalg.expr.Expression method), 89
to_dot() (pyeda.boolalg.bdd.BinaryDecisionDiagram method), 84
to_dot() (pyeda.boolalg.expr.Expression method), 89
to_int() (pyeda.boolalg.bfarray.farray method), 97
to_nnf() (pyeda.boolalg.expr.Expression method), 89
to_uint() (pyeda.boolalg.bfarray.farray method), 96
top (pyeda.boolalg.boolfunc.Function attribute), 80
tseitin() (pyeda.boolalg.expr.Expression method), 89
ttones() (in module pyeda.boolalg.bfarray), 93
ttvars() (in module pyeda.boolalg.bfarray), 93
ttzeros() (in module pyeda.boolalg.bfarray), 93

## U

uand() (pyeda.boolalg.bfarray.farray method), 97
uint2bdds() (in module pyeda.boolalg.bfarray), 94
uint2exprs() (in module pyeda.boolalg.bfarray), 94
uint2tts() (in module pyeda.boolalg.bfarray), 94 unand() (pyeda.boolalg.bfarray.farray method), 97
unbox() (pyeda.boolalg.boolfunc.Function method), 82
Unequal() (built-in function), 30
Unequal() (in module pyeda.boolalg.expr), 88 unor() (pyeda.boolalg.bfarray.farray method), 97 uor() (pyeda.boolalg.bfarray.farray method), 97 upoint2bddpoint() (in module pyeda.boolalg.bdd), 83 upoint2exprpoint() (in module pyeda.boolalg.expr), 87 usupport (pyeda.boolalg.boolfunc.Function attribute), 80 uxnor() (pyeda.boolalg.bfarray.farray method), 97 uxor() (pyeda.boolalg.bfarray.farray method), 97

## V

Variable (class in pyeda.boolalg.boolfunc), 78
Variable (class in pyeda.boolalg.expr), 90
VERSION (built-in variable), 99
vpoint2point() (in module pyeda.boolalg.boolfunc), 78
vrestrict() (pyeda.boolalg.bfarray.farray method), 96
vrestrict() (pyeda.boolalg.boolfunc.Function method), 80

## X

Xnor() (built-in function), 30
Xnor() (in module pyeda.boolalg.expr), 88
Xor() (built-in function), 29
Xor() (in module pyeda.boolalg.expr), 87
XorOp (class in pyeda.boolalg.expr), 90

## Z

zext() (pyeda.boolalg.bfarray.farray method), 97


[^0]:    ${ }^{1}$ Wikipedia: Intel 4004
    ${ }^{2}$ The Story of the Intel 4004

[^1]:    ${ }^{3}$ C.Y. Lee, Representation of Switching Circuits by Binary-Decision Programs, Bell System Technical Journal, Vol. 38, July 1959, pp. 985-999.
    ${ }_{5}^{4}$ S.B. Akers, Binary Decision Diagrams, IEEE Transactions on Computers, Vol. C-27, No. 6, June 1978, pp. 509-516.
    5 Randal E. Bryant Graph-Based Algorithms for Boolean Function Manipulation, IEEE Transactions on Computers, 1986 http://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf

[^2]:    ${ }^{6}$ R. Brayton, G. Hatchel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers, Boston, MA, 1984.

